汽车工程 ›› 2024, Vol. 46 ›› Issue (2): 230-240.doi: 10.19562/j.chinasae.qcgc.2024.02.005

• • 上一篇    下一篇

社会性驾驶交互关键效用析取与应用

赵晓聪1,房世玉1,李子睿2,孙剑1()   

  1. 1.同济大学,道路与交通工程教育部重点实验室,上海 201804
    2.北京理工大学机械与车辆学院,北京 100081
  • 收稿日期:2023-06-24 修回日期:2023-07-13 出版日期:2024-02-25 发布日期:2024-02-23
  • 通讯作者: 孙剑 E-mail:sunjian@tongji.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(52232015);国家自然科学基金杰出青年基金(52125208)

Extraction and Application of Key Utility Term for Social Driving Interaction

Xiaocong Zhao1,Shiyu Fang1,Zirui Li2,Jian Sun1()   

  1. 1.Tongji University,The Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Shanghai 201804
    2.School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081
  • Received:2023-06-24 Revised:2023-07-13 Online:2024-02-25 Published:2024-02-23
  • Contact: Jian Sun E-mail:sunjian@tongji.edu.cn

摘要:

共享道路空间中的人类驾驶交互行为具有兼顾伴行车损益的社会性特征。由于对驾驶交互社会性的理解缺失,自动驾驶车辆往往难以估计自身行为对伴行车辆的潜在影响,因而陷入“被迫保守”的决策困境。本文在博弈论框架中引入驾驶人兼顾伴行车损益的行为特征,构建社会性驾驶交互行为模型,刻画了驾驶交互中个体间的动作依赖关系。结合该模型,提出主车预期行为对其交互对象所造成潜在影响的通用定量表达——交互效用项。通过在规划目标中引入交互效用项,可定向调整运动规划算法的交互主动性。高速路出匝道实验结果表明,在对安全性无显著影响的前提下,通过提升交互主动性,基于优化和基于采样的运动规划算法在给定距离内出匝道任务成功率可分别提升3.9%与5.2%。

关键词: 自动驾驶, 运动规划, 社会性驾驶交互, 博弈论, 高速路出匝道

Abstract:

In shared road space, human driving interaction behavior has the social characteristics of considering the impact on surrounding vehicles. Lacking the understanding of such social characteristics, autonomous vehicles often struggle to estimate the potential impact of their behavior on surrounding vehicles, thus falling into over conservativeness of decision-making dilemma. A game-theory-based social driving interaction model is constructed by introducing in the behavioral characteristics of drivers considering the impact on surrounding vehicles to capture the action dependencies among road users. With this model, a generalized measurement, utility term of interaction activeness (UTIA), is proposed to quantify the potential impact of the host vehicle's anticipated behavior on its interactants. By introducing the UTIA into the planning objective, the interaction activeness of motion planning algorithm can be directionally adjusted. The results of highway exit experiments show that without compromising safety, enhancing interaction activeness can improve the success rate of the exit task within a given distance by 3.9% and 5.2% for optimization-based and sampling-based motion planning algorithm, respectively.

Key words: autonomous driving, motion planning, social driving interaction, game theory, highway exiting