汽车工程 ›› 2025, Vol. 47 ›› Issue (6): 1207-1218.doi: 10.19562/j.chinasae.qcgc.2025.06.019

• • 上一篇    

基于轮胎内嵌传感器阵列的智能轮胎磨损检测方法

金立生1,赵鑫1,谢宪毅1(),杨浩1,路波2,宋明亮2,郭柏苍1,曹耀光3   

  1. 1.燕山大学车辆与能源学院,秦皇岛 066004
    2.山东玲珑轮胎股份有限公司,烟台 265406
    3.北京航空航天大学交通科学与工程学院,北京 100191
  • 收稿日期:2024-10-16 修回日期:2024-12-10 出版日期:2025-06-25 发布日期:2025-06-20
  • 通讯作者: 谢宪毅 E-mail:xiexianyi@ysu.edu.cn
  • 基金资助:
    第二十七届中国科协年会学术论文。国家重点研发计划(2022YFB3206603)

Intelligent Tire Wear Detection Method Based on an Embedded Sensor Array Within the Tire

Lisheng Jin1,Xin Zhao1,Xianyi Xie1(),Hao Yang1,Bo Lu2,Mingliang Song2,Baicang Guo1,Yaoguang Cao3   

  1. 1.School of Vehicle and Energy,Yanshan University,Qinhuangdao 066004
    2.Shandong Linglong Tire Co. ,Ltd. ,Yantai 265406
    3.School of Transportation Science and Engineering,Beihang University,Beijing 100191
  • Received:2024-10-16 Revised:2024-12-10 Online:2025-06-25 Published:2025-06-20
  • Contact: Xianyi Xie E-mail:xiexianyi@ysu.edu.cn

摘要:

为充分利用智能轮胎内嵌集成传感器阵列能够采集轮胎-地面接触状态多模态信息的优势,并用以提升轮胎磨损检测精度,本文提出一种基于轮胎内嵌传感器阵列感知信息的智能轮胎磨损检测方法。首先,构建了由加速度传感器与PVDF压电薄膜传感器组成的传感器阵列,设计智能轮胎嵌入式阵列数据采集系统,采集不同磨损程度轮胎在多种工况下的传感器阵列数据。其次,对传感器阵列波形数据进行Butterworth滤波并提取其多维时域特征。分析车辆行驶工况变化时传感器阵列数据的时域特征变化规律,发现车速与载荷变化时加速度传感器与PVDF压电薄膜传感器的时域特征(长度特征、面积特征)变化特性具有显著差异。最后,建立了融合两种传感器时域特征信息的联合特征集,并构建了轮胎磨损检测机器学习模型。测试结果表明基于传感器阵列的轮胎磨损检测平均绝对误差为0.13 mm,相较于仅使用加速度传感器和仅使用PVDF压电薄膜传感器分别下降了67.67%和56.81%。在磨损误差0.3 mm内,传感器阵列的轮胎磨损检测准确率达到88.81%;在磨损误差0.5 mm内,传感器阵列的轮胎磨损检测准确率达到96.42%。证明了基于传感器阵列的智能轮胎磨损检测机器学习模型的有效性与准确性。

关键词: 智能轮胎, 传感器阵列, 磨损检测, 机器学习

Abstract:

In order to fully utilize the advantages of embedded integrated sensor arrays in smart tires for collecting multi-modal information of the tire-ground contact state, and to enhance the accuracy of tire wear detection, a smart tire wear detection method based on the embedded sensor array is proposed in this paper. Firstly, a sensor array composed of accelerometers and PVDF piezoelectric film sensors is constructed, and an embedded data acquisition system for the smart tire is designed to collect sensor array data from tires with various degrees of wear under different operating conditions. Next, the waveform data from the sensor array is processed using Butterworth filtering, and multidimensional time-domain features are extracted. The variations in the time-domain characteristics of the sensor array data are analyzed under changing vehicle operating conditions, revealing significant differences in the time-domain feature variations (length features and area features) of the accelerometer and PVDF piezoelectric film sensors with the change of vehicle speed and vertical load. Finally, a joint feature set that integrates the time-domain feature information from both types of sensors is established, and a machine learning model for tire wear detection is constructed. The test results show that the average absolute error of tire wear detection based on the sensor array is 0.13 mm, a reduction of 67.67% and 56.81%, respectively, compared to using only the accelerometer or only the PVDF piezoelectric film sensor. The detection accuracy of tire wear within a 0.3 mm error reaches 88.81%, while the accuracy within a 0.5 mm error reaches 96.42, which proves the effectiveness and accuracy of the machine learning model for tire wear detection based on the sensor array.

Key words: intelligent tire, sensor array, wear detection, machine learning