| 1 |
PHILION J, FIDLER S. Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIV 16. Springer International Publishing, 2020: 194-210.
|
| 2 |
HUANG J, HUANG G, ZHU Z, et al. BEVDet: high-performance multi-camera 3D object detection in bird-eye-view[J]. arXiv preprint arXiv:, 2021.
|
| 3 |
HUANG J, HUANG G. BEVDet4D: exploit temporal cues in multi-camera 3D object detection[J]. arXiv preprint arXiv:, 2022.
|
| 4 |
XIE E, YU Z, ZHOU D, et al. M2 BEV: multi-camera joint 3D detection and segmentation with unified birds-eye view representation[J]. arXiv preprint arXiv:, 2022.
|
| 5 |
HUANG J, HUANG G. BEVPoolv2: a cutting-edge implementation of BEVDet toward deployment[J]. arXiv preprint arXiv:, 2022.
|
| 6 |
LI Y, HUANG B, CHEN Z, et al. Fast-BEV: a fast and strong bird's-eye view perception baseline[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
|
| 7 |
WANG Y, GUIZILINI V C, ZHANG T, et al. DETR3D: 3D object detection from multi-view images via 3D-to-2D queries[C]. Conference on Robot Learning. PMLR, 2022: 180-191.
|
| 8 |
LI Z, WANG W, LI H, et al. BEVFormer: learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers[C]. European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 1-18.
|
| 9 |
YANG C, CHEN Y, TIAN H, et al. BEVFormer v2: adapting modern image backbones to bird's-eye-view recognition via perspective supervision[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 17830-17839.
|
| 10 |
LIN X, LIN T, PEI Z, et al. Sparse4D: multi-view 3D object detection with sparse spatial-temporal fusion[J]. arXiv preprint arXiv:, 2022.
|
| 11 |
LIN X, LIN T, PEI Z, et al. Sparse4D v2: recurrent temporal fusion with sparse model[J]. arXiv preprint arXiv:, 2023.
|
| 12 |
LIN X, PEI Z, LIN T, et al. Sparse4D v3: advancing end-to-end 3D detection and tracking[J]. arXiv preprint arXiv:, 2023.
|
| 13 |
LIU H, TENG Y, LU T, et al. SparseBEV: high-performance sparse 3D object detection from multi-camera videos[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 18580-18590.
|
| 14 |
JIANG Y, ZHANG L, MIAO Z, et al. PolarFormer: multi-camera 3D object detection with polar transformer[C]. Proceedings of the AAAI conference on Artificial Intelligence, 2023, 37(1): 1042-1050.
|
| 15 |
CHEN S, WANG X, CHENG T, et al. Polar parametrization for vision-based surround-view 3D detection[J]. arXiv preprint arXiv:, 2022.
|
| 16 |
VASWANI A. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017.
|
| 17 |
KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1‐2): 83-97.
|
| 18 |
LIN T. Focal loss for dense object detection[J]. arXiv preprint arXiv:, 2017.
|
| 19 |
WANG J, LI F, BI H. Gaussian focal loss: learning distribution polarized angle prediction for rotated object detection in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13.
|
| 20 |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631.
|
| 21 |
PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019, 32.
|
| 22 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
| 23 |
LEE Y, PARK J. CenterMask: real-time anchor-free instance segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 13906-13915.
|
| 24 |
LOSHCHILOV I. Decoupled weight decay regularization[J]. arXiv preprint arXiv:, 2017.
|
| 25 |
LIU Y, YAN J, JIA F, et al. Petrv2: a unified framework for 3D perception from multi-camera images[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 3262-3272.
|
| 26 |
LI Y, BAO H, GE Z, et al. Bevstereo: enhancing depth estimation in multi-view 3D object detection with temporal stereo[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(2): 1486-1494.
|
| 27 |
HUANG J, HUANG G. Bevpoolv2: a cutting-edge implementation of bevdet toward deployment[J]. arXiv preprint arXiv:, 2022.
|