汽车工程 ›› 2024, Vol. 46 ›› Issue (9): 1617-1627.doi: 10.19562/j.chinasae.qcgc.2024.09.009
• • 上一篇
张国娟1,胡宏宇1,李浩淼1,王明剑2,高菲1(),高镇海1
收稿日期:
2024-05-30
修回日期:
2024-08-05
出版日期:
2024-09-25
发布日期:
2024-09-19
通讯作者:
高菲
E-mail:gaofei123284123@jlu.edu.cn
基金资助:
Guojuan Zhang1,Hongyu Hu1,Haomiao Li1,Mingjian Wang2,Fei Gao1(),Zhenhai Gao1
Received:
2024-05-30
Revised:
2024-08-05
Online:
2024-09-25
Published:
2024-09-19
Contact:
Fei Gao
E-mail:gaofei123284123@jlu.edu.cn
摘要:
随着自动驾驶技术的快速发展,乘坐舒适性已成为影响自动驾驶车辆用户接受度和体验感的关键因素。本文针对自动驾驶车辆乘坐舒适性评价的研究现状进行系统性综述。首先,阐述了舒适性的含义,并分析了影响乘坐舒适性的主要因素。其次,对自动驾驶车辆的量化指标和评价模型进行了分类与详细阐述。其中,量化指标分为主观量化指标、基于车辆参数的量化指标、基于生理信号的量化指标以及基于驾驶员行为的量化指标;评价模型包括心理物理学模型、生物力学模型、统计学模型以及基于学习的评价模型。最后,提出了自动驾驶车辆舒适性研究的未来发展趋势,为进一步研究自动驾驶车系统设计与用户体验提升提供了技术参考。
张国娟,胡宏宇,李浩淼,王明剑,高菲,高镇海. 自动驾驶车辆乘坐舒适性评价研究综述[J]. 汽车工程, 2024, 46(9): 1617-1627.
Guojuan Zhang,Hongyu Hu,Haomiao Li,Mingjian Wang,Fei Gao,Zhenhai Gao. A Survey on Ride Comfort Evaluation of Autonomous Vehicles[J]. Automotive Engineering, 2024, 46(9): 1617-1627.
表3
车辆加速度、加速度变化率舒适阈范围"
文献 | 车辆参数 | 年份 | 舒适性量化指标 | 舒适性/不舒适性阈值范围 |
---|---|---|---|---|
[ | 车速 加速度 加速度变化率 | 2009 | 车速5-20 m/s下的车辆纵向加速度/(m·s-2) | <-3.5(20 m/s)~-5(5 m/s) |
车速5-20 m/s下的车辆纵向减速度/(m·s-2) | <2(20 m/s)~4(5 m/s) | |||
车速5-20 m/s下的车辆纵向加速度变化率/(m·s-3) | <2.5(20 m/s)~5(5 m/s) | |||
[ | 加速度 加速度变化率 | 2020 | 横向加速度/(m·s-2) | |a|<0.9(公共交通) |
0.9<|a|<4(正常型) | ||||
4<|a|<5.6(激进型) | ||||
5.6<|a|<7.6(极度激进型) | ||||
纵向加速度/(m·s-2) | |a|<0.9(公共交通) | |||
-2.0<a<-0.9;0.9<a<1.47(正常型) | ||||
-5.08<a<-2.0;1.47<a<3.07(激进型) | ||||
3.07<a<7.6(极度激进型) | ||||
-7.6<a<-5.08(紧急制动) | ||||
横向加速度变化率/(m·s-3) | |z|<0.6(公共交通) | |||
0.6<|z|<0.9(正常型) | ||||
0.9<|z|<2.0(激进型) | ||||
纵向加速度变化率/(m·s-3) | |z|<0.6(公共交通) | |||
0.6<|z|<0.9(正常型) | ||||
0.9<|z|<2.0(激进型) | ||||
[ | 加速度 | 2016 | 纵向加速度 | 0~0.14g(轻轨交通) |
0.14g~0.25g(保守型) | ||||
0.25g~0.50g(自信型) | ||||
纵向减速度 | 0~-0.14g(轻轨交通) | |||
-0.14g~-0.33g(保守型) | ||||
-0.33g~-0.76g(自信型) | ||||
横向加速度 | 0~0.15g(轻轨交通) | |||
0.15g~0.42g(保守型) | ||||
0.42g~0.54g(自信型) | ||||
垂向加速度 | 0~0.16g(保守型) | |||
0.16g~0.66g(自信型) | ||||
[ | 加速度 加速度变化率 | 2022 | 横向加速度 | <0.15g |
横向加速度变化率 | <0.25g/s | |||
[ | 加速度 | 2015 | 横向加速度/(m·s-2) | <1.8(可接受) |
1.8~3.6(能够忍受) | ||||
>5(超出承受范围) | ||||
[ | 加速度 | 1997 | 加速度均方根值/(m·s-2) | <0.315(没有不舒适) |
0.315~0.63(有一些不舒适) | ||||
0.5~1.0(相当不舒适) | ||||
0.8~1.6(不舒适) | ||||
1.25~2.5(很不舒适) | ||||
>2.0(极不舒适) |
表4
基于生理信号的量化指标"
文献 | 生理信号 | 年份 | 应用场景 |
---|---|---|---|
[ | 心率、皮肤电、眼动 | 2022 | 乘员对L2级自动驾驶的信任与风险感知 |
[ | 心率变异性 | 2021 | L2级自适应巡航系统的乘坐舒适性 |
[ | 心率、皮肤电、眼动 | 2019 | 高度自动驾驶车辆的乘坐舒适性 |
[ | 肌电、汗液 | 2015 | 自动驾驶货车的乘坐舒适性 |
[ | 肌电 | 2021 | 自动驾驶车辆不同悬挂类型的乘坐舒适性 |
[ | 近红外脑功能成像 | 2023 | 乘员对自动驾驶车辆的信任程度 |
[ | 脑电 | 2016 | 乘员乘坐车辆的晕动状态评估 |
[ | 肌电 | 2013 | 标准障碍测试工况下的乘坐舒适性 |
[ | 静态体压 | 2000 | 车辆座椅的静态乘坐舒适性 |
[ | 静态体压 | 2012 | |
[ | 静态体压 | 2023 | |
[ | 动态体压 | 2022 | 车辆座椅的动态乘坐舒适性 |
1 | DICHABENG P, MERAT N, MARKKULA G. Factors that influence the acceptance of future shared automated vehicles-a focus group study with United Kingdom drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 82: 121-140. |
2 | DELMAS M, CAMPS V, LEMERCIER C. Effects of environmental, vehicle and human factors on comfort in partially automated driving: a scenario-based study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 86: 392-401. |
3 | HOLTHAUSEN B E, WINTERSBERGER P, WALKER B N, et al. Situational trust scale for automated driving (STS-AD): development and initial validation[C].12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2020: 40-47. |
4 | MARJANEN Y, MANSFIELD N J. Relative contribution of translational and rotational vibration to discomfort[J]. Industrial Health,2010,48(5):519-529. |
5 | LI Z, FU R, WANG C, et al. Effects of linear acceleration on passenger comfort during physical driving on an urban road[J]. International Journal of Civil Engineering, 2020, 18: 1-8. |
6 | ZONG C, GUO K, GUAN H. Research on closed-loop comprehensive evaluation method of vehicle handling and stability[C]. SAE Paper 2000-01-0694. |
7 | PERELLO-MARCH J R, BURNS C G, et al. Using fNIRS to verify trust in highly automated driving[J].IEEE Transactions on Intelligent Transportation Systems,2023, 24(1): 739-751. |
8 | HU H, ZHANG G, CHENG M, et al. Biosignal-based driving experience analysis between automated mode and manual mode[C]. SAE Paper 2024-01-2504. |
9 | SLATER K. Discussion paper the assessment of comfort[J]. Journal of the Textile Institute, 1986, 77(3): 157-171. |
10 | RICHARDS L G, JACOBSON I R A D, BARBER R W, et al. Comfort reactions to bus motion on curved roadways[J]. Ergonomics, 1979, 22(5): 517-519. |
11 | DE LOOZE M P, KUIJT-EVERS L F M, VAN DIEEN J. Sitting comfort and discomfort and the relationships with objective measures[J]. Ergonomics, 2003, 46(10): 985-997. |
12 | CARSTEN O, MARTENS M H. How can humans understand their automated cars? HMI principles, problems and solutions[J]. Cognition, Technology & Work, 2019, 21(1): 3-20. |
13 | HARTWICH F, BEGGIATO M, KREMS J F. Driving comfort, enjoyment and acceptance of automated driving-effects of drivers’ age and driving style familiarity[J]. Ergonomics, 2018, 61(8): 1017-1032. |
14 | PENG C, HORN S, MADIGAN R, et al. Conceptualising user comfort in automated driving: findings from an expert group workshop[J]. Transportation Research Interdisciplinary Perspectives, 2024. |
15 | Intelligent transport systems-full speed range adaptive cruise control (FSRA) systems-performance requirements and test procedures:JIS D0807—2011[S].2011.01.01. |
16 | GOLD C, HAPPEE R, BENGLER K. Modeling take-over performance in level 3 conditionally automated vehicles[J]. Accident Analysis & Prevention, 2018, 116: 3-13. |
17 | LIANG N, YANG J, YU D, et al. Using eye-tracking to investigate the effects of pre-takeover visual engagement on situation awareness during automated driving[J]. Accident Analysis & Prevention, 2021, 157: 106143. |
18 | ELBANHAWI M, SIMIC M, JAZAR R. In the passenger seat: investigating ride comfort measures in autonomous cars[J]. IEEE Intelligent Transportation Systems Magazine, 2015, 7(3): 4-17. |
19 | PENG C, MERAT N, ROMANO R, et al. Drivers’ evaluation of different automated driving styles: is it both comfortable and natural?[J]. Human Factors, 2022: 00187208221113448. |
20 | DETTMANN A, HARTWICH F, ROßNER P, et al. Comfort or not? automated driving style and user characteristics causing human discomfort in automated driving[J]. International Journal of Human-Computer Interaction, 2021, 37(4): 331-339. |
21 | PADDEU D, PARKHURST G, SHERGOLD I. Passenger comfort and trust on first-time use of a shared autonomous shuttle vehicle[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102604. |
22 | Subjective rating scale for evaluation of noise and ride comfort characteristics related to motor vehicle tires:SAE J1060[S].USA: SAE, 2014. |
23 | 亓莱滨. 李克特量表的统计学分析与模糊综合评判[J]. 山东科学, 2006, 19(2): 18-23,28. |
QI L B. Statistical analysis and fuzzy comprehensive evaluation of Likert scale[J]. Shandong Science, 2006, 19(2): 18-23,28. | |
24 | 兰凤崇, 李诗成, 陈吉清, 等. 自动驾驶汽车乘员个性化乘坐舒适性辨识方法[J]. 汽车工程, 2021, 43(8): 1168-1176. |
LAN F C, LI S C, CHEN J Q, et al. Identification method for occupant personalized ride comfort of autonomous vehicles[J]. Automotive Engineering, 2021, 43(8): 1168-1176. | |
25 | FRASIE A, BERTRAND-CHARETTE M, COMPAGNAT M, et al. Validation of the Borg CR10 Scale for the evaluation of shoulder perceived fatigue during work-related tasks[J]. Applied Ergonomics, 2024, 116: 104200. |
26 | PENG C, ÖZTÜRK İ, NORDHOFF S, et al. Exploring user comfort in automated driving: a qualitative study with younger and older users using the Wizard-Of-Oz method[C] .Adjunct Proceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2023: 342-345. |
27 | Mechanical vibration and shock. evaluation of human exposure to whole-body vibration. part 1. general requirements:ISO 2631-1[S].2009.01.19. |
28 | 汽车平顺性试验方法: GB/T 4970—2009 [S]. 1985.03.02. |
Method of running test-automotive ride comfort: GB/T 4970—2009 [S]. 1985.03.02. | |
29 | BAE I, MOON J, JHUNG J, et al. Self-driving like a human driver instead of a robocar: personalized comfortable driving experience for autonomous vehicles[J]. arXiv preprint arXiv:, 2020. |
30 | TAN Z, WEI J, DAI N. Real-time dynamic trajectory planning for intelligent vehicles based on quintic polynomial[C].2022 IEEE 21st International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS). IEEE, 2022: 51-56. |
31 | DU X, TAN K K. Autonomous vehicle velocity and steering control through nonlinear model predictive control scheme[C].2016 IEEE transportation electrification conference and expo, Asia-Pacific (ITEC Asia-Pacific). IEEE, 2016: 001-006. |
32 | YUSOF N M, KARJANTO J, TERKEN J, et al. The exploration of autonomous vehicle driving styles: preferred longitudinal, lateral, and vertical accelerations[C].Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2016: 245-252. |
33 | XU J, YANG K, SHAO Y M, et al. An experimental study on lateral acceleration of cars in different environments in Sichuan, Southwest China[J]. Discrete Dynamics in nature and Society, 2015, 2015(1): 494130. |
34 | ALBERTO R, TIWANA V, SERGIO I, et al. Surface electromyography for risk assessment in work activities designed using the "revised NIOSH lifting equation"[J]. International Journal of Industrial Ergonomics, 2018, 68:34-45. |
35 | STAPEL J, GENTNER A, HAPPEE R. On-road trust and perceived risk in level 2 automation[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 89: 355-370. |
36 | YANG Z, FU W H, ZHANG Z, et al. Comfort optimization of adaptive cruise control based on heart rate variability and fuzzy control[C].Journal of Physics: Conference Series. IOP Publishing, 2021, 2010(1): 012176. |
37 | BEGGIATO M, HARTWICH F, KREMS J. Physiological correlates of discomfort in automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66: 445-458. |
38 | ZHENG R, NAKANO K, OKAMOTO Y, et al. Evaluation of sternocleidomastoid muscle activity of a passenger in response to a car's lateral acceleration while slalom driving[J]. IEEE Transactions on Human-Machine Systems, 2013, 43(4): 405-415. |
39 | ZHENG R, YAMABE S, NAKANO K, et al. Biosignal analysis to assess mental stress in automatic driving of trucks: palmar perspiration and masseter electromyography[J]. Sensors, 2015, 15(3): 5136-5150. |
40 | KIA K, JOHNSON P W, KIM J H. The effects of different seat suspension types on occupants' physiologic responses and task performance: implications for autonomous and conventional vehicles[J]. Applied Ergonomics, 2021, 93: 103380. |
41 | CHUANG S W, CHUANG C H, YU Y H, et al. EEG alpha and gamma modulators mediate motion sickness-related spectral responses[J]. International Journal of Neural Systems, 2016, 26 (2): 1650007. |
42 | TEWARI V K, PRASAD N. Optimum seat pan and back-rest parameters for a comfortable tractor seat[J]. Ergonomics, 2000, 43 (2): 167-186. |
43 | NORO K, NARUSE T, LUEDER R, et al. Application of Zen sitting principles to microscopic surgery seating[J]. Appl Ergon, 2012, 43 (2): 308-319. |
44 | ZHANG T, REN J. Research on seat static comfort evaluation based on objective interface pressure[J]. SAE International Journal of Commercial Vehicles, 2023, 16(02-16-04-0023). |
45 | 高开展, 罗巧, 张志飞, 等. 基于体压分布的汽车座椅振动舒适性评价[J]. 汽车工程, 2022, 44(12): 1936-1943. |
GAO K Z, LUO Q, ZHANG Z F, et al. Vibration comfort evaluation of vehicle seat based on body pressure distribution[J]. Automotive Engineering, 2022, 44(12): 1936-1943. | |
46 | 韩俊杰,骆开庆,邱健,等.基于双目相机的眼动仪头部姿态估计方法[J].激光与光电子学进展,2021,58(14): 310-317. |
HAN J J, LUO K Q, QIU J,et al. Head pose estimation method of eye tracker based on binocular camera[J]. Laser & Optoelectronics Progress,2021,58(14): 310-317. | |
47 | BUBB H, ESTERMANN S. Influence of forces on comfort feeling in vehicles[C]. SAE Paper 2000-01-2171. |
48 | ZACHER I, BUBB H. Strength based discomfort model of posture and movement[J]. SAE Transactions, 2004: 87-92. |
49 | PORTER J M, GYI D E. Exploring the optimum posture for driver comfort[J]. International Journal of Vehicle Design, 1998, 19(3): 255-266. |
50 | WOLF P, HENNES N, RAUSCH J, et al. The effects of stature, age, gender, and posture preferences on preferred joint angles after real driving[J]. Applied Ergonomics, 2022, 100: 103671. |
51 | SOARES G, DE LIMA D, NETO A M. A mobile application for driver's drowsiness monitoring based on PERCLOS estimation[J]. IEEE Latin America Transactions, 2019, 17(2): 193-202. |
52 | BERSENEV E Y, DUBININ V I, ERMAKOV V M, et al. Investigation of the psychophysiological response of passengers of fast trains with the different comfort level[J]. Hygiene and Sanitation, 2021, 100(4): 318-326. |
53 | GARCÍA-HERRERO S, GUTIÉRREZ J M, HERRERA S, et al. Sensitivity analysis of driver's behavior and psychophysical conditions[J]. Safety Science, 2020, 125: 104586. |
54 | GORELIK S, GRUDININ V, LECSHINSKIY V, et al. Method for assessing the influence of psychophysical state of drivers on control safety based on monitoring of vehicle movement parameters[J]. Transportation Research Procedia, 2020, 50: 152-159. |
55 | THOMAS B J, HEIDEN S, DYSON K, et al. The psychophysics of affordance perception: Stevens’ power law scaling of perceived maximum forward reachability with an object[J]. Attention, Perception, & Psychophysics, 2023, 85(8): 2869-2878. |
56 | AO D, WONG P K, HUANG W, et al. Analysis of co-relation between objective measurement and subjective assessment for dynamic comfort of vehicles[J]. International Journal of Automotive Technology, 2020, 21: 1553-1567. |
57 | 郭子彬, 陈慧, 夏韬锴, 等. 弯道工况下驾驶员主观风险感知的量化研究[J]. 汽车工程, 2022, 44(9): 1447-1455. |
GUO Z B, CHEN H, XIA T K, et al. Study on quantification of driver’s subjective risk perception in curve driving condition[J]. Automotive Engineering, 2022, 44(9): 1447-1455. | |
58 | 唐传茵, 张义民, 赵广耀, 等. 基于烦恼率的悬架振动舒适性评价方法[J]. 机械工程学报, 2014(5). |
TANG C Y, ZHANG Y M, ZHANG G Y, et al. An evaluation method of suspension vibration comfort based on annoyance rate[J]. Journal of Mechanical Engineering, 2014(5). | |
59 | DONG R C, GUO L X. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures[J]. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33(11): e2876. |
60 | PANKOKE S, BUCK B, WOELFEL H P. Dynamic FE model of sitting man adjustable to body height, body mass and posture used for calculating internal forces in the lumbar vertebral disks[J]. Journal of Sound and Vibration, 1998, 215(4): 827-839. |
61 | AMIRI S, NASERKHAKI S, PARNIANPOUR M. Effect of whole-body vibration and sitting configurations on lumbar spinal loads of vehicle occupants[J]. Computers in Biology and Medicine, 2019, 107: 292-301. |
62 | GUO L X, DONG R C, ZHANG M. Effect of lumbar support on seating comfort predicted by a whole human body-seat model[J]. International Journal of Industrial Ergonomics, 2016, 53: 319-327. |
63 | LIU C, QIU Y, GRIFFIN M J. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration[J]. Ergonomics, 2015, 58(7): 1207-1219. |
64 | MATSUMOTO Y, GRIFFIN M J. Modelling the dynamic mechanisms associated with the principal resonance of the seated human body[J]. Clinical Biomechanics, 2001, 16: S31-S44. |
65 | KIM T H, KIM Y T, YOON Y S. Development of a biomechanical model of the human body in a sitting posture with vibration transmissibility in the vertical direction[J]. International Journal of Industrial Ergonomics, 2005, 35(9): 817-829. |
66 | LIANG C C, CHIANG C F. Modeling of a seated human body exposed to vertical vibrations in various automotive postures[J]. Industrial Health, 2008, 46(2): 125-137. |
67 | GRUJICIC M, PANDURANGAN B, XIE X, et al. Musculoskeletal computational analysis of the influence of car-seat design/adjustments on long-distance driving fatigue[J]. International Journal of Industrial Ergonomics, 2010, 40(3): 345-355. |
68 | DU X, SUN C, ZHENG Y, et al. Evaluation of vehicle vibration comfort using deep learning[J]. Measurement, 2021, 173: 108634. |
69 | ZHANG H, FU R. An ensemble learning-online semi-supervised approach for vehicle behavior recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 10610-10626. |
70 | ZHANG H, GUO Y, WANG C, et al. Stacking-based ensemble learning method for the recognition of the preceding vehicle lane-changing manoeuvre: a naturalistic driving study on the highway[J]. IET Intelligent Transport Systems, 2022, 16(4): 489-503. |
71 | HUANG F, ZHAO C, HUANG Y, et al. Study on the evaluation model of vehicle comfort based on the neural network[J]. IFAC-PapersOnLine, 2018, 51(31): 553-558. |
72 | NGUYEN T, NGUYEN-PHUOC D Q, WONG Y D. Developing artificial neural networks to estimate real-time onboard bus ride comfort[J]. Neural Computing and Applications, 2021, 33(10): 5287-5299. |
73 | TAGHAVIFAR H, RAKHEJA S. Supervised ANN-assisted modeling of seated body apparent mass under vertical whole body vibration[J]. Measurement, 2018, 127: 78-88. |
74 | MOU L, ZHOU C, ZHAO P, et al. Driver stress detection via multimodal fusion using attention-based CNN-LSTM[J]. Expert Systems with Applications, 2021, 173: 114693. |
75 | LIU H, HUANG W. The research of drivability evaluation index and quantitative method[C]. SAE Paper 2016-01-1906. |
76 | KIA K, JOHNSON P W, KIM J H. The effects of different seat suspension types on occupants' physiologic responses and task performance: implications for autonomous and conventional vehicles[J]. Applied Ergonomics, 2021, 93: 103380. |
77 | RUBIRA FREIXAS M. Effects of driving style on passengers comfort: a research paper about the influence of the bus driver´ s driving style on public transport users[J]. 2016. |
78 | ZHU W, ZHANG X, HU C, et al. Passenger comfort quantification for automated vehicle based on stacking of psychophysics mechanism and encoder-transformer model[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. |
79 | BELLEM H, THIEL B, SCHRAUF M, et al. Comfort in automated driving: an analysis of preferences for different automated driving styles and their dependence on personality traits[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 55: 90-100. |
80 | BAE I, MOON J, KIM S. Driving preference metric-aware control for self-driving vehicles[J]. International Journal of Intelligent Engineering & Systems, 2019, 12(6). |
81 | RAO M V C, PRAHLAD V. A tunable fuzzy logic controller for vehicle-active suspension systems[J]. Fuzzy Sets and Systems, 1997, 85(1): 11-21. |
82 | ORABY W A H, EL-DEMERDASH S M, SELIM A M, et al. Improvement of vehicle lateral dynamics by active front steering control[J]. SAE Transactions, 2004: 1101-1110. |
[1] | 王国栋,刘立,孟宇,杜海平,白国星,顾青. 自动驾驶汽车避撞极限研究[J]. 汽车工程, 2024, 46(6): 985-994. |
[2] | 杜国栋,邹渊,张旭东,孙文景,孙巍. 基于双估计强化学习结合前向预测控制的自动驾驶运动控制研究[J]. 汽车工程, 2024, 46(4): 564-576. |
[3] | 张培兴,秦孔建,朱冰,赵健,范天昕,赵文博. 自动驾驶仿真多逻辑场景综合评价方法[J]. 汽车工程, 2024, 46(3): 375-382. |
[4] | 付新科,蔡英凤,陈龙,王海,刘擎超. 不确定性环境下的自动驾驶汽车行为决策方法[J]. 汽车工程, 2024, 46(2): 211-221. |
[5] | 朱向雷,吴志新,张宇飞,赵帅,李克秋,孙博华. 基于场景降维及采样方法的场景库优化方法研究[J]. 汽车工程, 2023, 45(8): 1408-1416. |
[6] | 林程, 汪博文, 吕沛原, 宫新乐, 于潇. 面向变曲率道路的自动驾驶汽车换道博弈运动规划与协同控制研究[J]. 汽车工程, 2023, 45(7): 1099-1111. |
[7] | 陈龙,杨晨,蔡英凤,王海,李祎承. 基于多模态特征融合的行人穿越意图预测方法[J]. 汽车工程, 2023, 45(10): 1779-1790. |
[8] | 朱冰,孙宇航,赵健,张培兴,范天昕,宋东鉴. 自动驾驶汽车测试场景基元自动提取方法[J]. 汽车工程, 2022, 44(11): 1647-1655. |
[9] | 张志勇,龙凯,杜荣华,黄彩霞. 自动驾驶汽车高速超车轨迹跟踪协调控制[J]. 汽车工程, 2021, 43(7): 995-1004. |
[10] | 徐向阳,胡文浩,董红磊,王琰,肖凌云,李鹏辉. 自动驾驶汽车测试场景构建关键技术综述[J]. 汽车工程, 2021, 43(4): 610-619. |
[11] | 吴光强, 陈洁. 乘用车液力变矩器优化设计研究综述*[J]. 汽车工程, 2020, 42(8): 1090-1096. |
[12] | 金辉, 张子豪. 基于自适应动态规划的HEV能量管理研究综述*[J]. 汽车工程, 2020, 42(11): 1490-1496. |
[13] | 蔡英凤,臧勇,孙晓强,陈龙,王海,江浩斌,何友国. 自动驾驶汽车横向可拓预瞄切换控制系统研究*[J]. 汽车工程, 2018, 40(9): 1032-1039. |
|