1 |
廖晓军, 何莉萍, 钟志华, 等. 电池管理系统国内外现状及其未来发展趋势[J]. 汽车工程, 2006,28(10): 961-964.
|
|
LIAO X J, HE L P, ZHONG Z H, et al. A review of battery management system [J]. Automotive Engineering, 2006,28(10): 961-964.
|
2 |
SMITH K A, RAHN C D, WANG C Y. Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries[J]. IEEE Transactions on Control Systems Technology, 2010,18(3): 654-663.
|
3 |
GALEOTTI M, CINÀ L, GIAMMANCO C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015,89: 678-686.
|
4 |
LI Y, CHEN J, LAN F. Enhanced online model identification and state of charge estimation for lithium-ion battery under noise corrupted measurements by bias compensation recursive least squares[J]. Journal of Power Sources, 2020,456: 227984.
|
5 |
LI Y, CHEN J, LIU W, et al. Online parameters and state of charge co-estimation of lithium-ion battery in varying temperature using joint extended kalman filter[J]. Journal of Physics. Conference Series, 2021,2026(1): 12055.
|
6 |
SMITH K A, RAHN C D, WANG C Y. Model-based electrochemical estimation of lithium-ion batteries[C].2008 IEEE International Conference on Control Applications, 2008.
|
7 |
YAZAMI R, REYNIER Y. Thermodynamics and crystal structure anomalies in lithium-intercalated graphite[J]. Journal of Power Sources, 2006,153(2): 312-318.
|
8 |
SHEN S, SADOUGHI M, CHEN X, et al. A deep learning method for online capacity estimation of lithium-ion batteries[J]. Journal of Energy Storage, 2019,25: 100817.
|
9 |
HU C, JAIN G, ZHANG P, et al. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery[J]. Applied Energy, 2014,129: 49-55.
|
10 |
TIAN J, XIONG R, SHEN W, et al. Deep neural network battery charging curve prediction using 30 points collected in 10 min[J]. Joule, 2021,5(6): 1521-1534.
|
11 |
李欢. 基于运行数据的异常电池诊断及实现[D]. 北京:北京交通大学, 2018.
|
|
LI H. Abnormal battery diagnosis and implementation based on operating data [D]. Beijing: Beijing Jiaotong University, 2018.
|
12 |
DING Y, LU C, MA J. Li-ion battery health estimation based on multi-layer characteristic fusion and deep learning[C]. IEEE, 2017.
|
13 |
胡杰, 朱雪玲, 何陈, 等. 基于实车数据的电动汽车电池健康状态预测[J]. 汽车工程, 2021,43(9): 1291-1299.
|
|
HU J, ZHU X L, HE C, et al. Prediction on battery state of health of electric vehicles based on real vehicle data [J]. Automotive Engineering, 2021,43(9): 1291-1299.
|
14 |
李梦飞. 基于数据挖掘的电动汽车动力电池健康状态研究[D]. 上海:上海交通大学, 2018.
|
|
LI M F. Research on state of health for electric vehicle power battery based on data mining [D]. Shanghai: Shanghai Jiao Tong University, 2018.
|
15 |
肖迁, 穆云飞, 焦志鹏, 等. 基于改进LightGBM的电动汽车电池剩余使用寿命在线预测[J]. 电工技术学报, 2022: 1-11.
|
|
XIAO Q, MU Y F, JIAO Z P, et al. Improved LightGBM based remaining useful life prediction of lithium-ion battery under driving conditions [J]. Transactions of China Electrotechnical Society, 2022: 1-11.
|
16 |
LI Y, ZOU C, BERECIBAR M, et al. Random forest regression for online capacity estimation of lithium-ion batteries[J]. Applied Energy, 2018,232: 197-210.
|
17 |
葛阳, 郭兰中, 牛曙光, 等. 基于t-SNE和LSTM的旋转机械剩余寿命预测[J]. 振动与冲击, 2020,39(7): 223-231.
|
|
GE Y, GUO L Z, NIU S G, et al. Prediction of remaining useful life based on t-SNE and LSTM for rotating machinery [J]. Journal of Vibration and Shock, 2020,39(7): 223-231.
|
18 |
张康, 黄亦翔, 赵帅, 等. 基于t-SNE数据驱动模型的盾构装备刀盘健康评估[J]. 机械工程学报, 2019,55(7): 19-26.
|
|
ZHANG K, HUANG Y X, ZHAO S, et al. Health assessment of shield equipment cutterhead based on t-SNE data-driven model [J]. Journal of Mechanical Engineering, 2019,55(7): 19-26.
|
19 |
简献忠, 张博, 王如志. 一种改进RAO算法与多核SVM的锂离子电池寿命预测模型[J]. 小型微型计算机系统, 2022-10-23: 1-7.
|
|
JIAN X Z, ZHANG B, WANG R Z. Lithium-ion battery life prediction model based on multi-kernel SVM with an improved RAO algorithm [J]. Journal of Chinese Computer Systems, 2022-10-23: 1-7.
|
20 |
LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018,373: 40-53.
|
21 |
WENG C, CUI Y, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013,235: 36-44.
|