汽车工程 ›› 2024, Vol. 46 ›› Issue (1): 139-150.doi: 10.19562/j.chinasae.qcgc.2024.01.015
收稿日期:
2023-05-10
修回日期:
2023-06-29
出版日期:
2024-01-25
发布日期:
2024-01-23
通讯作者:
余庆华
E-mail:qhyu@whut.edu.cn
基金资助:
Zhiyuan Li1,Ruihua Lu2,Qinghua Yu1(),Fuwu Yan1
Received:
2023-05-10
Revised:
2023-06-29
Online:
2024-01-25
Published:
2024-01-23
Contact:
Qinghua Yu
E-mail:qhyu@whut.edu.cn
摘要:
近年来,锂离子电池热失控问题已成为抑制新能源汽车动力电池发展的主要瓶颈。本文针对新能源汽车动力电池热失控问题的研究展开了全面综述,阐述了锂离子电池热失控的诱因,介绍了锂离子电池热失控过程以及不同变量条件下锂离子电池的热失控特征。基于锂离子电池的热失控特征参数综述了适用于锂离子电池火灾的早期预警方法和火灾抑制方法,总结了目前新能源汽车动力电池热失控问题研究的不足和发展趋势,为新能源汽车动力电池领域的发展提供一定的参考。
李致远, 鲁锐华, 余庆华, 颜伏伍. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150.
Zhiyuan Li, Ruihua Lu, Qinghua Yu, Fuwu Yan. Research and Analysis of Thermal Runaway Characteristics and Prevention and Control Technology of Power Battery[J]. Automotive Engineering, 2024, 46(1): 139-150.
表2
锂离子电池热失控特征表"
文献 | 研究对象 | 容量/(A·h) | 滥用条件 | 起火时间/s | 热失控持续时间/s | 热失控最高温度/℃ | 温升速率/(℃·s-1) |
---|---|---|---|---|---|---|---|
[ | 钴酸锂电池 | 2.2 | 电滥用 | 1 462 | 488 | 777.7 | 14.88 |
[ | 钴酸锂电池 | 2.6 | 热滥用 | 1 274 | 583 | 800.0 | 10.17 |
[ | 锰酸锂电池 | 17 | 电滥用 | 2 744 | 136 | 155.7 | 22.00 |
[ | 锰酸锂电池 | 17 | 热滥用 | 411.5 | 4.70 | ||
[ | 磷酸铁锂电池 | 86 | 电滥用 | 3 040 | 186 | 423.0 | 0.12 |
[ | 磷酸铁锂电池 | 86 | 热滥用 | 916 | 181 | 372.1 | 0.32 |
[ | 三元锂电池 | 30 | 电滥用 | 810 | 670 | 736.8 | 2.33 |
[ | 三元锂电池 | 25 | 热滥用 | 431 | 400 | 1 180.0 | 29.50 |
[ | 钛酸锂电池 | 40 | 电滥用 | 4 100 | 415 | 520.0 | 2.25 |
[ | 钛酸锂电池 | 40 | 热滥用 | 581.0 | 0.53 | ||
[ | 钛酸锂电池 | 40 | 电滥用+热滥用 | 281 | 639 | 541.0 | 2.59 |
表3
典型灭火剂的灭火性能对比"
灭火剂种类 | 灭火原理 | 优点 | 缺点 | |
---|---|---|---|---|
气体灭火剂 | CO2灭火剂 | 隔绝、稀释氧浓度 | 可扑灭明火,降低燃烧温度,缓解热失控爆炸 | 无法抑制电池内部链式反应和传播,灭火不彻底,易发生复燃 |
七氟丙烷灭火剂 | 受热分解吸收热量且产生的含氟自由基可以阻断链式燃烧反应 | 能够快速扑灭电池外部明火,灭火残留物少 | 成本较高,且灭火过程中会产生大量有毒有害气体,易发生复燃 | |
全氟己酮灭火剂 | 快速汽化吸收热量,快速分解成氟化烷自由基阻断链式燃烧反应 | 绝缘性能好,有效抑制锂离子电池火灾,不易发生复燃 | 成本较高,且灭火过程中会产生有毒物质 | |
干粉灭火剂 | ABC粉灭火剂 | 冷却、隔绝、稀释和化学抑制 | 可以抑制电池明火的链式燃烧反应 | 降温效果不明显,存在极高的复燃风险 |
水基型灭火剂 | 水 | 隔绝、吸热、降温 | 环境友好、冷却性能好 | 剂量消耗大、存在短路风险 |
泡沫灭火剂 | 泡沫层析出的水在锂电池表面形成一层水膜,隔绝空气 | 能够有效包覆电池模组 | 难以渗透到模组内部,无法有效抑制电池组内热失控传播 | |
细水雾灭火剂 | 冷却、隔绝、稀释氧浓度 | 环境友好、冷却性能好、剂量消耗小 | 灭火剂覆盖均匀性差,易产生有毒有害气体 | |
气溶胶灭火剂 | 热气溶胶灭火剂 | 化学抑制,惰性气体稀释氧浓度 | 密闭空间内灭火迅速 | 降温效果不明显,易发生复燃 |
冷气溶胶灭火剂 | 超细灭火微粒化学抑制作用 | 密闭空间内灭火迅速 | 降温效果不明显,高温烟雾污染电池 |
1 | HUANG Z, LIU J, ZHAI H, et al. Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions [J]. Energy, 2021, 233: 121103. |
2 | 贾子润, 王震坡, 王秋诗, 等. 新能源汽车动力电池热失控机理和安全风险管控方法的研究 [J]. 汽车工程, 2022, 44(11): 1689-1705. |
JIA Z R, WANG Z P, WANG Q S, et al. Research on thermal runaway mechanism and safety risk control method of power battery in new-energy vehicles [J]. Automotive Engineering, 2022, 44(11): 1689-1705. | |
3 | JI C, WANG B, WANG S, et al. Optimization on uniformity of lithium-ion cylindrical battery module by different arrangement strategy [J]. Applied Thermal Engineering, 2019, 157: 113683. |
4 | LYU P, LIU X, QU J, et al. Recent advances of thermal safety of lithium ion battery for energy storage [J]. Energy Storage Materials, 2020, 31: 195-220. |
5 | DUH Y, SUN Y, LIN X, et al. Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: a review [J]. Journal of Energy Storage, 2021, 41: 102888. |
6 | LIU B, JIA Y, YUAN C, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85-112. |
7 | 周洋捷, 王震坡, 洪吉超, 等. 新能源汽车动力电池“过充电-热失控”安全防控技术研究综述 [J]. 机械工程学报, 2022, 58(10): 112-135. |
ZHOU Y J, WANG Z P, HONG J C, et al. Review on safety prevention and control technology of new energy vehicle power battery "overcharging - thermal runaway" [J]. Journal of Mechanical Engineering, 2022, 58(10): 112-135. | |
8 | LIAO Z, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries [J]. Journal of Power Sources, 2019, 436: 226879. |
9 | CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards [J]. Journal of Energy Chemistry, 2021, 59: 83-99. |
10 | SHAHID S, AGELIN-CHAAB M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries [J]. Energy Conversion and Management: X, 2022, 16: 100310. |
11 | FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries [J]. Joule, 2020, 4(4): 743-770. |
12 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: a review [J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111437. |
13 | LIU X, REN D, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit [J]. Joule, 2018, 2(10): 2047-2064. |
14 | 刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究 [J]. 高电压技术, 2021, 47(4): 1333-1343. |
LIU Y, TAO F B, SUN L, et al. Study on thermal runaway of lithium iron phosphate energy storage battery and its internal evolution mechanism [J]. High Voltage Engineering, 2021, 47(4): 1333-1343. | |
15 | GRLJ C G, KRZNAR N, PRANJIĆ M. A decade of UAV docking stations: a brief overview of mobile and fixed landing platforms [J]. Drones, 2022, 6(1): 17. |
16 | LIN C, XU S, LIU J. Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry [J]. International Journal of Hydrogen Energy, 2018, 43(17): 8375-8384. |
17 | LIU Z, YU Q, ZHAO Y, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries [J]. Chem Soc Rev, 2019, 48(1): 285-309. |
18 | MENG F, XIONG X, TAN L, et al. Strategies for improving electrochemical reaction kinetics of cathode materials for subzero-temperature Li-ion batteries: a review [J]. Energy Storage Materials, 2022, 44: 390-407. |
19 | ZHANG Q, NIU J, ZHAO Z, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states [J]. Journal of Energy Storage, 2022, 45: 103759. |
20 | ZHANG Q, LIU T, WANG Q. Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery [J]. Journal of Energy Storage, 2021, 42: 103063. |
21 | 董海斌, 羡学磊, 马建琴, 等. 锰酸锂电池热失控特性研究 [J]. 消防科学与技术, 2022, 41(1): 21-25. |
DONG H B, XIAN X L, MA J Q, et al. Study on thermal runaway characteristics of lithium manganate batteries [J]. Fire Science and Technology, 2022, 41(1): 21-25. | |
22 | YUAN W, LIANG D, CHU Y, et al. Aging effect delays overcharge-induced thermal runaway of lithium-ion batteries [J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104830. |
23 | 袁威, 梁栋, 褚燕燕, 等. 过充电诱发电动车用锂电池热失控行为分析 [J]. 中山大学学报(自然科学版), 2022, 61(6): 136-143. |
YUAN W, LIANG D, CHU Y Y, et al. Thermal runaway behavior analysis of lithium battery for electric vehicle induced by overcharging [J]. Journal of Sun Yat-sen University (Natural Science Edition), 2022, 61(6): 136-143. | |
24 | 邹晓龙. 不同环境压力和温度下锰酸锂电池热失控特性研究 [D]. 广汉: 中国民用航空飞行学院, 2022. |
ZOU X L. Thermal runaway characteristics of lithium manganate batteries under different ambient pressures and temperatures [D]. Guanghan: Civil Aviation Flight Academy of China, 2022. | |
25 | 兰凤崇, 郑文杰, 李志杰, 等. 车用动力电池的挤压载荷变形响应及内部短路失效分析 [J]. 华南理工大学学报(自然科学版), 2018, 46(6): 65-72. |
LAN F C, ZHENG W J, LI Z J, et al. Deformation response and internal short-circuit failure analysis of vehicle power battery under compression load [J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(6): 65-72. | |
26 | SUN L, WEI C, GUO D, et al. Comparative study on thermal runaway characteristics of lithium iron phosphate battery modules under different overcharge conditions [J]. Fire Technology, 2020, 56(4): 1555-1574. |
27 | LIU P, LI Y, MAO B, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery [J]. Applied Thermal Engineering, 2021, 192: 116949. |
28 | MAO B, LIU C, YANG K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode [J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. |
29 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery [J]. Journal of Power Sources, 2018, 389: 106-119. |
30 | LIU J, HUANG Z, SUN J, et al. Heat generation and thermal runaway of lithium-ion battery induced by slight overcharging cycling [J]. Journal of Power Sources, 2022, 526: 231136. |
31 | 潘公宇, 薛磊. 不同荷电状态下锂电池的热失控实验研究 [J]. 电源技术, 2022, 46(10): 1132-1135. |
PAN G Y, XUE L. Experimental study on thermal runaway of lithium battery under different state of charge [J]. Power Supply Technology, 2022, 46(10): 1132-1135. | |
32 | LIU Z, GUO X, MENG N, et al. Study of thermal runaway and the combustion behavior of lithium-ion batteries overcharged with high current rates [J]. Thermochimica Acta, 2022, 715: 179276. |
33 | 牛慧昌, 伍靖怡, 李钊, 等. 不同诱发条件下NCM三元锂离子电池热失控和燃烧特性 [J]. 装备环境工程, 2022, 19(7): 83-92. |
NIU H C, WU J Y, LI Z, et al. Thermal runaway and combustion characteristics of NCM ternary lithium ion batteries under different induced conditions [J]. Equipment Environmental Engineering, 2022, 19(7): 83-92. | |
34 | JIN C, SUN Y, WANG H, et al. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: experiments and modeling [J]. Applied Energy, 2022, 312: 118760. |
35 | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性 [J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
WANG H H, WU Z Q, CHU D R. Performance and thermal safety of lithium titanate batteries in mild overdischarge mode [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. | |
36 | 邢学彬, 袁德强, 王占国, 等. 不同触发条件下的钛酸锂电池热失控特性研究 [J]. 消防科学与技术, 2021, 40(6): 787-792. |
XING X B, YUAN D Q, WANG Z G, et al. Study on thermal runaway characteristics of lithium titanate battery under different trigger conditions [J]. Fire Science and Technology, 2021, 40(6): 787-792. | |
37 | JIA Z, WANG S, QIN P, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating [J]. Journal of Energy Storage, 2023, 61: 106791. |
38 | ZHU X, WANG Z, WANG Y, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: thermal runaway features and safety management method [J]. Energy, 2019, 169: 868-880. |
39 | 李高巨. 基于数据驱动的电动汽车动力电池风险评估方法研究 [D]. 北京: 北京理工大学, 2022. |
LI G J. Research on risk assessment method of electric vehicle power battery using data-driven approach [D]. Beijing: Beijing Institute of Technology, 2022. | |
40 | 王兵. 车用锂离子电池热失控规律及预警方法研究 [D]. 北京: 北京工业大学, 2021. |
WANG B. Study on thermal runaway law and warning method of vehicle lithium ion battery [D]. Beijing: Beijing University of Technology, 2021. | |
41 | JI C, ZHANG Z, WANG B, et al. Study on thermal runaway warning method of lithium-ion battery [J]. Journal of Loss Prevention in the Process Industries, 2022, 78: 104785. |
42 | FENG X, WENG C, OUYANG M, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161(1): 168-180. |
43 | 孙振宇, 王震坡, 刘鹏, 等. 新能源汽车动力电池系统故障诊断研究综述 [J]. 机械工程学报, 2021, 57(14): 87-104. |
SUN Z Y, WANG Z P, LIU P, et al. A review of fault diagnosis of new energy vehicle power battery system [J]. Journal of Mechanical Engineering, 2021, 57(14): 87-104. | |
44 | HONG J, WANG Z, LIU P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles [J]. Energies, 2017, 10(7): 919. |
45 | 左付山, 李政原, 周天, 等. 基于模糊逻辑的纯电动公交车动力电池工作状态评价 [J]. 森林工程, 2020, 36(3): 86-91,97. |
ZUO F S, LI Z Y, ZHOU T, et al. Evaluation of the working state of pure electric bus power battery based on fuzzy logic [J]. Forest Engineering, 2020, 36(3): 86-91,97. | |
46 | LI Y, WANG W, LIN C, et al. Safety modeling and protection for lithium-ion batteries based on artificial neural networks method under mechanical abuse [J]. Science China(Technological Sciences), 2021, 64(11): 2373-2388. |
47 | 刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究 [J]. 中国安全科学学报, 2021, 31(11): 120-126. |
LIU T Y, LI S, FU W D, et al. Study on thermal runaway warning strategy of large capacity lithium iron phosphate power battery [J]. China Safety Science Journal, 2021, 31(11): 120-126. | |
48 | CAI T, PUNEET V, VIVIAN T, et al. Detection of Li-ion battery failure and venting with carbon dioxide sensors [J]. eTransportation, 2020, 7: 100100. |
49 | YANG J, ZHENG Z, WEI D, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning [J]. Joule, 2020, 4(8): 1714-1729. |
50 | 杨启帆, 马宏忠, 段大卫, 等. 基于气体特性的锂离子电池热失控在线预警方法 [J]. 高电压技术, 2022, 48(3): 1202-1211. |
YANG Q F, MA H Z, DUAN D W, et al. Online warning method of thermal runaway of lithium ion battery based on gas characteristics [J]. High Voltage Technology, 2022, 48(3): 1202-1211. | |
51 | LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing [J]. Journal of Power Sources, 2018, 373: 220-231. |
52 | 王伟. 锂离子电池含磷阻燃电解液及复合隔膜的设计与安全性能的研究 [D]. 合肥: 中国科学技术大学, 2019. |
WANG W. Design and safety performance of flame retardant electrolyte containing phosphorus and composite diaphragm for lithium ion batteries [D]. Hefei: University of Science and Technology of China, 2019. | |
53 | WANG J, CAI W, MU X, et al. Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries [J]. Nano Research, 2021, 14(12): 4865-4877. |
54 | PATIL M, SEO J, LEE M. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management [J]. Energy Conversion and Management, 2021, 229: 113715. |
55 | ZHANG T, GAO Q, GU Y, et al. Studies on thermal management of lithium-ion battery using non-metallic heat exchanger [J]. Applied Thermal Engineering, 2021, 182: 116095. |
56 | MONIKA K, CHAKRABORTY C, ROY S, et al. An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles [J]. Journal of Energy Storage, 2021, 35: 102301. |
57 | YANG N, WANG J, XU S, et al. A comparative assessment of the battery liquid-cooling system employing two coolants: phase change material emulsion and water [J]. International Journal of Energy Research, 2022, 46(5): 6498-6516. |
58 | YANG X, TAN S, LIU J. Thermal management of Li-ion battery with liquid metal [J]. Energy Conversion and Management, 2016, 117: 577-585. |
59 | LIU Z, LIU X, MENG H, et al. Numerical analysis of the thermal performance of a liquid cooling battery module based on the gradient ratio flow velocity and gradient increment tube diameter [J]. International Journal of Heat and Mass Transfer, 2021, 175: 121338. |
60 | GUO J, LIU F, XU Y, et al. Optimization design and numerical study of liquid-cooling structure for cylindrical lithium-ion battery pack [J]. Journal of Energy Engineering, 2021, 147(4): 04021017. |
61 | 柯巧敏. 液冷热管理对锂离子动力电池组热失控传播的抑制和阻断作用研究 [D]. 北京: 中国科学院大学, 2022. |
KE Q M. Research on retarding and obstruction effect of liquid-cooling thermal management on thermal runaway propagation of power lithium-ion battery pack [D]. Beijing: University of Chinese Academy of Sciences, 2022. | |
62 | MOHAMMED A H, ESMAEELI R, ALINIAGERDROUDBARI H, et al. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway [J]. Applied Thermal Engineering, 2019, 160: 114106. |
63 | MONIKA K, DATTA S P. Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module [J]. Energy Conversion and Management, 2022, 251: 114936. |
64 | WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study [J]. Journal of Power Sources, 2017, 340: 51-59. |
65 | LIU J, FAN Y, XIE Q. Temperature mitigation effect of phase change material on overcharging lithium-ion batteries: an experimental study [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(8): 5153-5163. |
66 | HUANG Q, LI X, ZHANG G, et al. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material [J]. Journal of Cleaner Production, 2022, 330: 129718. |
67 | KSHETRIMAYUM K S, YOON Y, GYE H, et al. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system [J]. Applied Thermal Engineering, 2019, 159: 113797 |
68 | YANG X, DUAN Y, ZHANG Z, et al. An experimental study on preventing thermal runaway propagation in lithium-ion battery module using aerogel and liquid cooling plate together [J]. Fire Technology, 2020, 56(6): 2579-2602. |
69 | BAUSCH B, FRANKL S, BECHER D, et al. Naturally-derived thermal barrier based on fiber-reinforced hydrogel for the prevention of thermal runaway propagation in high-energetic lithium-ion battery packs [J]. Journal of Energy Storage, 2023, 61: 106841. |
70 | LI D, LIU P, ZHANG Z, et al. Sauer, battery thermal runaway fault prognosis in electric vehiclesbased on abnormal heat generation and deep learning algorithms [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37(7): 8513-8525. |
71 | GHIJI M, NOVOZHILOV V, MOINUDDIN K, et al. A review of lithium-ion battery fire suppression [J]. Energies, 2020, 13(19): 5117. |
72 | 张乃平, 马永飞, 杨孟霖, 等. 锂电池火灾灭火技术研究综述 [J]. 中国安全生产科学技术, 2022, 18(7): 47-53. |
ZHANG N P, MA Y F, YANG M F, et al. Review on fire extinguishing technology of lithium battery [J]. China Safety Production Science and Technology, 2022, 18(7): 47-53. | |
73 | LUO W, ZHU S, GONG J, et al. Research and development of fire extinguishing technology for power lithium batteries [J]. Procedia Engineering, 2018, 211: 531-537. |
74 | ZHU M, ZHU S, GONG J, et al. Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist [J]. Procedia Engineering, 2018, 211: 1083-1090. |
75 | 张青松, 程相静, 白伟. 含复合添加剂细水雾抑制锂电池火灾效果分析 [J]. 消防科学与技术, 2018, 37(9): 1211-1214. |
ZHANG Q S, CHENG X J, BAI W. Analysis of fire control effect of water mist containing compound additive on lithium battery [J]. Fire Science and Technology, 2018, 37(9): 1211-1214. | |
76 | WANG Z, WANG K, WANG J, et al. Inhibition effect of liquid nitrogen on thermal runaway propagation of lithium ion batteries in confined space [J]. Journal of Loss Prevention in the Process Industries, 2022, 79: 104853. |
77 | TIANWEI Z, HAO L, JIWEI S, et al. Synergistic inhibition effect on lithium-ion batteries during thermal runaway by N2-twin-fluid liquid mist [J]. Case Studies in Thermal Engineering, 2022, 37: 102269. |
78 | 张俐恒, 张迪, 贺元骅. 抑制三元锂离子电池热失控火灾研究 [J]. 消防科学与技术, 2023, 41(2): 153-158. |
ZHANG L H, ZHANG D, HE Y H. Research on suppression of thermal runaway fire of ternary lithium-ion batteries [J]. Fire Science and Technology, 2023, 41(2): 153-158. | |
79 | ZHANG L, DUAN Q, MENG X, et al. Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway [J]. Energy Conversion and Management, 2022, 252(15): 115091. |
80 | 韩路豪, 王子阳, 何骁龙, 等. 细水雾释放策略对大容量三元锂离子电池热失控火灾抑制效果的实验研究[J]. 储能科学与技术, 2023, 12(5): 1664-1674. |
HAN L H, WANG Z Y, HE X L, et al. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
[1] | 刘启全,马建,赵轩,张凯,孟德安,相里康. 基于值率模型的电动汽车动力电池电压异常检测[J]. 汽车工程, 2023, 45(9): 1728-1739. |
[2] | 李达,邓钧君,张照生,刘鹏,王震坡. 电动车辆动力电池安全预警策略研究综述[J]. 汽车工程, 2023, 45(8): 1392-1407. |
[3] | 廉玉波,吴恺,曾董,李松,王溥希. 基于整车平台的动力电池平台化研究[J]. 汽车工程, 2023, 45(5): 807-813. |
[4] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[5] | 陈吉清,李子涵,兰凤崇,蒋心平,潘威,陈继开. 基于非线性降维IC特征的实车电池SOH估计[J]. 汽车工程, 2023, 45(2): 199-208. |
[6] | 兰凤崇,潘威,陈吉清. 基于Aseq2seq-PF的实车锂离子动力电池剩余使用寿命预测[J]. 汽车工程, 2023, 45(12): 2348-2356. |
[7] | 洪吉超,梁峰伟,杨海旭,李克瑞. 大数据驱动动力电池智能安全管理与控制方法研究[J]. 汽车工程, 2023, 45(10): 1845-1861. |
[8] | 廉玉波,凌和平,王钧斌,潘华,谢朝. 基于混合高斯-隐马尔可夫模型的动力电池实时热失控检测[J]. 汽车工程, 2023, 45(1): 139-146. |
[9] | 陈吉清,冼浩岚,兰凤崇. 均布模组式动力电池包热失控典型模式分析[J]. 汽车工程, 2022, 44(8): 1199-1211. |
[10] | 曾祥兵,谢堃,张伟,徐俊超,张培根,孙正明. 新型动力电池热管理系统设计及性能研究[J]. 汽车工程, 2022, 44(4): 476-481. |
[11] | 王亚楠,韩雪冰,卢兰光,冯旭宁,李建秋,欧阳明高. 电动汽车动力电池研究展望:智能电池、智能管理与智慧能源[J]. 汽车工程, 2022, 44(4): 617-637. |
[12] | 贾子润,王震坡,王秋诗,黎小慧,孙逢春. 新能源汽车动力电池热失控机理和安全风险管控方法的研究[J]. 汽车工程, 2022, 44(11): 1689-1705. |
[13] | 舒强,王艺帆,梁元. 我国电动汽车动力电池安全标准现状及展望[J]. 汽车工程, 2022, 44(11): 1706-1715. |
[14] | 杨娜,仝义鑫,赵立军,王剑锋. 基于相变材料的电池模组热失控传播过程研究[J]. 汽车工程, 2021, 43(8): 1161-1167. |
[15] | 常润泽,郑斌,冯旭宁,徐成善,王淮斌,陈立铎,王有镗. 隔热层对锂电池模组热失控蔓延特性影响的实验研究[J]. 汽车工程, 2021, 43(10): 1448-1456. |
|