汽车工程 ›› 2022, Vol. 44 ›› Issue (11): 1689-1705.doi: 10.19562/j.chinasae.qcgc.2022.11.007
所属专题: 新能源汽车技术-动力电池&燃料电池2022年
收稿日期:
2022-05-15
出版日期:
2022-11-25
发布日期:
2022-11-19
通讯作者:
王震坡
E-mail:wangzhenpo@bit.edu.cn
基金资助:
Zirun Jia,Zhenpo Wang(),Qiushi Wang,Xiaohui Li,Fengchun Sun
Received:
2022-05-15
Online:
2022-11-25
Published:
2022-11-19
Contact:
Zhenpo Wang
E-mail:wangzhenpo@bit.edu.cn
摘要:
针对新能源汽车动力电池的热失控与安全风险问题,本文从热失控的诱发与反应机理出发,通过分析现有动力电池安全管控方法,归纳了动力电池安全问题的研究现状与最新进展,分析了当前动力电池安全管控研究中存在的主要问题,指出了新能源汽车安全风险管控技术发展趋势,旨在推动动力电池安全风险预警和管控技术提升,保障驾乘人员生命财产安全,消除消费者安全焦虑, 促进新能源汽车产业发展。
贾子润,王震坡,王秋诗,黎小慧,孙逢春. 新能源汽车动力电池热失控机理和安全风险管控方法的研究[J]. 汽车工程, 2022, 44(11): 1689-1705.
Zirun Jia,Zhenpo Wang,Qiushi Wang,Xiaohui Li,Fengchun Sun. Research on Thermal Runaway Mechanism and Safety Risk Control Method of Power Battery in New-Energy Vehicles[J]. Automotive Engineering, 2022, 44(11): 1689-1705.
表1
锂离子动力电池热失控诱发条件对比"
诱发条件 | 诱发原因 | 研究内容与参考文献 | 内部机理 | 外部表现 |
---|---|---|---|---|
机械滥用 | 挤压、弯曲 | 通过建立力学模型模拟了在动力电池受到挤压、弯曲后在危险SOC值和高冲击速度下的动力学行为及机械应力状态[ | 集流体、隔膜被破坏以及发生内短路 | 动力电池发生变形、漏液、产生气体、外壳破裂以及气体被点燃、电池热失控起火 |
压痕 | 对不同容量与SOC的电池进行压痕试验研究了电池在内短路时的外部特征和内部结构[ | |||
针刺 | 在电池模组级别进行了钝挫伤和钉刺试验,研究了不同SOC下动力电池的热失控时产生的气体对热失控的危害[ | |||
电滥用 | 过充电 | 过充电下的电滥用能够引起电池内部物质的分解反应,导致电池产生焦耳热,引发电池热失控,且在热失控温度急剧上升前会出现电压的急剧下降[ | 电极析锂,石墨负极结构破坏 | 电池发生产气、膨胀、变形、容量衰退以及热失控起火甚至爆炸 |
过放电 | 过放电会导致电池出现不可逆的容量损失,其主要原因是铜集电极的溶解和阳极表面沉积铜,促使SEI膜增加[ | 铜集流体溶解 | 电池发生产气、膨胀、容量衰退 | |
外短路 | 电池系统在外部环境的作用下会形成外短路,过大的电流会使电池产生大量热,甚至极耳熔断,进而导致严重的热失控[ | SEI膜分解、隔膜破坏 | 电池极耳熔断以及热失控起火 | |
热滥用 | 外部加热烘烤、高温下运行 | 通过试验研究了热滥用所引起的高温破坏电池固体电解质膜和电池隔膜,并导致一系列放热副反应的发生,引发热失控[ | SEI膜分解、隔膜融化、内短路 | 电池发生变形、产气、火焰射流、容量衰退 |
建立三元锂电池的热滥用模型,模拟了炉箱加热试验,发现温度越高,发生热失控的时间越早,且副反应对锂离子电池的热失控有直接影响[ | ||||
电池老化 | 循环老化 | 在过度充电循环下,老化后的电池热稳定性变差,发热反应开始的温度比新电池更低[ | 电池正极的结构损坏、产生金属沉积物、刺穿隔膜、SEI 膜生成和破裂 | 电池容量衰退、热稳定性下降、电池短路 |
在常温或高温条件下,会产生金属Li沉积物并伴随SEI膜不断生成和破裂,极大影响了电池热稳定性,导致电池的热稳定性下降[ | ||||
在低温循环的过程中,产生Li镀层会导致电池容量急剧衰减,电池的热稳定性发生明显降低[ | ||||
随着电池循环次数的增多,副反应所形成的尖锐物质会刺穿隔膜引发内短路。且发现了内短路发生过程中的熔断现象[ | ||||
储存老化 | 电池内阻增加,电池内部副反应会产生更多的热量,导致电池更易遭受电滥用[ | 内阻增加 | 电池容量衰退、产生热量增加 | |
在较高的温度下(例如70 ℃),储存会导致电池容量随时间线性下降,并在较高的存储温度下显示出更快的容量下降[ | ||||
电池缺陷 | 电池中混入杂质 | 在生产过程中由于制造工艺的限制,电池内部会混入杂质,从而使这种现象存在于电池的整个使用过程中[ | 电极析出金属刺穿 隔膜 | 电池短路、容量衰退 |
表2
电池安全防护设计"
层级 | 类型 | 主要方法 | 文献 |
---|---|---|---|
安全的电池材料 | 隔膜 | 使用抗冲击性和稳定性高的多层隔膜、通过陶瓷涂层包覆、具有闭孔效应阻断锂离子交换反应、促进锂离子均匀沉积避免枝晶刺穿隔膜 | [ |
正极材料 | 掺杂其他金属、使用热稳定性高的材料 | [ | |
SEI膜 | 使用高稳定性的锂合金材料、提高SEI膜的稳定性 | [ | |
电解液 | 在电解液中添加阻燃剂,使用不易燃的电解液、水系电解液、固体电解液 | [ | |
电池单体安全性设计 | 电池壳体设计 | 通过在电池壳体设计安全阀、热熔丝阻断电流、设计正温度系数电极阻断反应 | [ |
电池系统安全性优化 | 新结构电池 | “刀片电池”“弹匣电池”“大禹电池” | [ |
电池包结构优化和强化设计 | 加强电池包的抗冲击性能、将电池包分成多个电池模组,加强结构稳定性、在电池包中增加冷却管 | [ | |
电池热管理系统设计优化 | 空气冷却、液体冷却、相变材料冷却、热管冷却以及复合冷却等方式 | [ |
1 | 王震坡,黎小慧,孙逢春.产业融合背景下的新能源汽车技术发展趋势[J].北京理工大学学报,2020,40(1):1-10. |
WANG Zhenpo, LI Xiaohui, SUN Fengchun. Development trend of new energy vehicle technology under the background of industrial convergence [J]. Transactions of Beijing Institute of Technology,2020,40(1):1-10. | |
2 | 王震坡,袁昌贵,李晓宇.新能源汽车动力电池安全管理技术挑战与发展趋势分析[J].汽车工程,2020,42(12):1606-1620. |
WANG Zhenpo, YUAN Changgui, LI Xiaoyu. Analysis of technical challenges and development trend of new energy vehicle power battery safety management[J]. Automotive Engineering, 2020,42(12):1606-1620. | |
3 | CHEN Z, XIONG R, SUN F. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(24):93. |
4 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: a review [J]. Journal of Power Sources, 2016, 306: 178-192. |
5 | BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(3). |
6 | WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium-ion battery [J]. Journal of Power Sources, 2012, 208: 210-224. |
7 | HU X, ZHANG K, LIU K, et al. Advanced fault diagnosis for lithium-ion battery systems: a review of fault mechanisms, fault features, and diagnosis procedures [J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
8 | 孙振宇, 王震坡, 刘鹏, 等.新能源汽车动力电池系统故障诊断研究综述[J].机械工程学报,2021,57(14):87-104. |
SUN Zhenyu, WANG Zhenpo, LIU Peng, et al. Overview of fault diagnosis in new energy vehicle power battery system [J]. Chinese Journal of Mechanical Engineering,2021,57(14):87-104. | |
9 | SUN P, BISSCHOP R, NIU H, et al. A review of battery fires in electric vehicles [J]. Fire Technology, 2020, 56(4): 1361-1410. |
10 | 苏伟,钟国彬,沈佳妮,等.锂离子电池故障诊断技术进展[J].储能科学与技术,2019,8(2):225-236. |
SU W, ZHONG G B, SHEN J N, et al. Progress in fault diagnosis technology of lithium ion battery [J]. Energy Storage Science and Technology,2019,8(2):225-236. | |
11 | ZHANG J, ZHANG L, SUN F, et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application [J]. IEEE Access, 2018, 6: 23848-23863. |
12 | 朱晓庆, 王震坡, HSIN W, 等. 锂离子动力电池热失控与安全管理研究综述[J]. 机械工程学报, 2020, 56(14): 91-118. |
ZHU X Q, WANG Z P, HSIN W, et al. Review on thermal runaway and safety management of Lithium ion power batteries [J]. Journal of Mechanical Engineering, 2020, 56(14): 91-118. | |
13 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京:清华大学,2016. |
FENG X N. Thermal runaway induced and extended mechanism, modeling and prevention and control of automotive lithium-ion power batteries [D]. Beijing: Tsinghua University,2016. | |
14 | CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards [J]. Journal of Energy Chemistry, 2021, 59: 83-99. |
15 | ZHU J, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries [J]. Journal of Power Sources, 2018, 378: 153-168. |
16 | 朱晓庆,王震坡,王聪,等.三元锂离子动力电池过充行为特性实验研究[J].汽车工程,2019,41(5):582-589. |
ZHU X Q, WANG Z P, WANG C, et al. Experimental study on overcharging behavior of terpolymer lithium ion power battery [J]. Automotive Engineering, 2019,41(5):582-589. | |
17 | ZHU X, WANG Z, WANG Y, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: thermal runaway features and safety management method [J]. Energy, 2019, 169: 868-880. |
18 | ZHANG L, MA Y, CHENG X, et al. Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery [J]. Journal of Power Sources, 2015, 293: 1006-1015. |
19 | FENG X, FANG M, HE X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J]. Journal of Power Sources, 2014, 255: 294-301. |
20 | 姚银花. NCM三元锂动力电池热失控研究与仿真[D].西安:长安大学,2018. |
YAO Yinhua. Research and simulation on thermal runaway of NCM ternary lithium power batteries [D]. Xi'an: Chang'an University,2018. | |
21 | XIONG R, PAN Y, SHEN W, et al. lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives [J]. Renewable and Sustainable Energy Reviews, 2020, 131. |
22 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells [J]. Journal of Power Sources, 2017, 341: 373-386. |
23 | OUYANG M, FENG X, HAN X, et al. A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery [J]. Applied Energy, 2016, 165: 48-59. |
24 | REN D, HSU H, LI R, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2:100034. |
25 | 张明轩. 汽车动力电池系统内短路问题研究[D]. 北京: 清华大学,2018. |
ZHANG Mingxuan. Research on internal short circuit of automotive power battery system [D]. Beijing: Tsinghua University, 2018. | |
26 | XU J, LIU B, WANG X, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180-189. |
27 | CHRISTENSEN P A, MILOJEVIC Z, WISE M S, et al. Thermal and mechanical abuse of electric vehicle pouch cell modules [J]. Applied Thermal Engineering, 2021, 189. |
28 | LIU J, DUAN Q, MA M, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445(Jan.1):227263.1-227263.9. |
29 | BÖRNER M, FRIESEN A, GRÜTZKE M, et al. Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries [J]. Journal of Power Sources, 2017, 342: 382-392. |
30 | WALDMANN T, QUINN J B, RICHTER K, et al. Electrochemical, post-mortem, and ARC analysis of Li-ion cell safety in second-life applications [J]. Journal of the Electrochemical Society, 2017, 164(13): A3154-A3162. |
31 | FRIESEN A, HILDEBRAND S, HORSTHEMKE F, et al. Al2O3 coating on anode surface in lithium ion batteries: impact on low temperature cycling and safety behavior [J]. Journal of Power Sources, 2017, 363: 70-77. |
32 | FRIESEN A, HORSTHEMKE F, MÖNNIGHOFF X, et al. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis [J]. Journal of Power Sources, 2016, 334: 1-11. |
33 | FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries [J]. Journal of Power Sources, 2015, 274: 432-439. |
34 | 王绥军,傅凯,官亦标,等.软包磷酸铁锂电池低温热安全性能研究[J].储能科学与技术,2016,5(2):204-209. |
WANG S J, FU K, GUAN Y B, et al. Study on thermal safety performance of soft coated lithium iron phosphate battery at low temperature [J]. Energy Storage Science and Technology, 2016,5(2):204-209. | |
35 | 任东生,冯旭宁,韩雪冰,等.锂离子电池全生命周期安全性演变研究进展[J].储能科学与技术,2018,7(6):957-966. |
REN Dongsheng, FENG Xuning, HAN Xuebing, et al. Research progress in safety evolution of lithium ion battery life cycle [J]. Energy Storage Science and Technology,2018,7(6):957-966. | |
36 | ZHANG L, LIU J, DU L, et al. LiNi0.5Co0.2Mn0.3O2/graphite batteries storing at high temperature: capacity fading and raveling of aging mechanisms [J]. Journal of Power Sources, 2021, 496. |
37 | LIU Y, LIU Q, XIN L, et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction [J]. Nature Energy, 2017, 2(7). |
38 | LI Z, XIONG Y, SUN S, et al. Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator [J]. Journal of Membrane Science, 2018, 565: 50-60. |
39 | SHI C, ZHANG P, HUANG S, et al. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries [J]. Journal of Power Sources, 2015, 298: 158-165. |
40 | PAN R, SUN R, WANG Z, et al. Sandwich-structured nano/micro fiber-based separators for lithium metal batteries [J]. Nano Energy, 2019, 55: 316-326. |
41 | JO M, NOH M, OH P, et al. A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries [J]. Advanced Energy Materials, 2014, 4(13). |
42 | SASAKI T, GODBOLE V, TAKEUCHI Y, et al. Morphological and structural changes of Mg-substituted Li(Ni,Co,Al)O2 during overcharge reaction [J]. Journal of the Electrochemical Society, 2011, 158(11). |
43 | 赵骁,方谋,王要武,等.电动车用锂离子蓄电池模块安全性之正负极材料[J].新材料产业,2014(5):35-39. |
ZHAO X, FANG M, WANG Y W, et al. Safety of lithium-ion battery modules for electric vehicles using anode and cathode materials [J]. New Materials Industry,2014(5):35-39. | |
44 | MENKIN S, GOLODNITSKY D, PELED E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications [J]. Electrochemistry Communications, 2009, 11(9): 1789-1791. |
45 | XIA L, XIA Y, LIU Z. A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries [J]. Journal of Power Sources, 2015, 278: 190-196. |
46 | ZENG G, AN Y, XIONG S, et al. Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries [J]. ACS Appl Mater Interfaces, 2019, 11(26): 23229-23235. |
47 | REBER D, FIGI R, KÜHNEL R S, et al. Stability of aqueous electrolytes based on LiFSI and NaFSI [J]. Electrochimica Acta, 2019, 321. |
48 | CHEN R, QU W, QIAN J, et al. Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range [J]. Journal of Materials Chemistry A, 2017, 5(47): 24677-24685. |
49 | KIM J H, LEE K H, KO D C, et al. Design of integrated safety vent in prismatic lithium-ion battery [J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2505-2511. |
50 | CHEN Y S, HU C C, LI Y Y. The importance of heat evolution during the overcharge process and the protection mechanism of electrolyte additives for prismatic lithium ion batteries [J]. Journal of Power Sources, 2008, 181(1): 69-73. |
51 | CHEN Z, HSU P C, LOPEZ J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries [J]. Nature Energy, 2016, 1(1). |
52 | 温俊.刀片电池:新能源汽车的动力升级[J].中国工业和信息化,2021(1):16-22. |
WEN Jun. Blade battery: power upgrade of new energy vehicles [J]. China Industry and Information Technology, 2021(1):16-22. | |
53 | 王传福, 何龙, 孙华军, 等. 电池包、车辆和储能装置:CN110165116A[P]. 2019-08-23. |
WANG Chuanfu, HE Long, SUN Huajun, et al. Battery pack, vehicle and energy storage device: CN110165116A[P]. 2019-08-23. | |
54 | 王传福, 何龙, 孙华军, 等. 电池包、车辆和储能装置: CN110165118B[P]. 2019-12-20. |
WANG Chuanfu, HE Long, SUN Huajun, et al. Battery pack, vehicle and energy storage device: CN110165118B [P]. 2019-12-20. | |
55 | 甄文媛. 三元锂电池包的安全新解 [J]. 汽车纵横, 2021(4): 79-81. |
ZHEN Wenyuan. New safety solution of ternary lithium battery pack [J]. Automotive Review, 2021(4): 79-81. | |
56 | 郑雪芹.动力电池技术创新有余,突破不足[J].汽车纵横,2021(9):77-80. |
ZHENG Xueqin. Power battery technology innovation, breakthrough is not enough [J]. Automobile Aspect, 2021(9):77-80. | |
57 | 金一丹. 长城汽车发布大禹电池技术 [N]. 中国证券报, 2021-09-25: A05. |
JIN Yidan. Great wall motor releases dayu battery technology [N]. China Securities Journal, 2021-09-25: A05. | |
58 | YOONCHEOL J, GUNGOO L, TAEYONG K, et al. Development of battery pack design for high power Li-ion battery pack of HEV[J]. World Electric Vehicle Journal, 2007, 1(1):94-99. |
59 | FREY P, GRACE D. Battery pack exhaust nozzle utilizing an SMA seal retainer: US8663824[P]. 2014. |
60 | SINZ W, BREITFUS C, TOMASCH E, et al. Integration of a crashworthy battery in a fully electric city bus [J]. International Journal of Crashworthiness, 2012, 17(1): 105-118. |
61 | XU J, LAN C, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling [J]. Applied Thermal Engineering, 2017, 110: 883-890. |
62 | 刘霏霏. 微热管在电动汽车电池热管理系统中应用关键技术研究[D]. 广州: 华南理工大学,2017. |
LIU Feifei. Application of micro heat pipe in electric vehicle battery thermal management system [D]. Guangzhou: South China University of Technology, 2017. | |
63 | KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles [J]. Applied Thermal Engineering, 2019, 149: 192-212. |
64 | HAKEEM A A A, SOLYALI D. Empirical thermal performance investigation of a compact lithium ion battery module under forced convection cooling [J]. Applied Sciences, 2020, 10(11): 3732. |
65 | SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution [J]. Journal of Power Sources, 2008, 182(2): 630-638. |
66 | 叶海军. 锂离子电池组微通道液冷系统的结构设计与优化[D]. 镇江: 江苏大学,2018. |
YE Haijun. Structural design and optimization of microchannel liquid cooling system for lithium ion battery pack [D]. Zhenjiang: Jiangsu University,2018. | |
67 | AZIZI Y, SADRAMELI S M. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates [J]. Energy Conversion and Management, 2016, 128: 294-302. |
68 | WANG Q, JIANG B, LI B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128. |
69 | 焦波.板式脉动热管的实验与应用研究进展[J].化工进展,2014,33(9):2252-2259,2265. |
JIAO Bo. Progress in experiment and application of plate pulsating heat pipe [J]. Chemical Industry and Engineering Progress,2014,33(9):2252-2259,2265. | |
70 | YE Y, SHI Y, SAW L H, et al. Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs [J]. International Journal of Heat and Mass Transfer, 2016, 92: 893-903. |
71 | HUANG P, VERMA A, ROBLES D J, et al. Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition [J]. Applied Thermal Engineering, 2018, 132: 521-530. |
72 | AL-HALLAJ S. Thermal management and safety of Li-ion batteries[C]. Proceedings of the Aiche Midwest Regional Conference, F, 2011. |
73 | 廖正海,张国强.锂离子电池热失控早期预警研究进展[J].电工电能新技术,2019,38(10):61-66. |
LIAO Zhenghai, ZHANG Guoqiang. Research progress on early warning of thermal runaway of lithium ion battery [J]. New Technology of Electric Power And Electricity,2019,38(10):61-66. | |
74 | LI B, PAREKH M H, ADAMS R A, et al. lithium-ion battery thermal safety by early internal detection, prediction and prevention [J]. Sci Rep, 2019, 9(1): 13255. |
75 | KAMIYAMA T, NARITA Y, SATO H, et al. Structural change of carbon anode in a lithium-ion battery product associated with charging process observed by neutron transmission bragg-edge imaging [J]. Physics Procedia, 2017, 88: 27-33. |
76 | NASCIMENTO M, FERREIRA M S, PINTO J L. Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions[J]. Applied Thermal Engineering, 2019, 149: 1236-1243. |
77 | RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1: cell embedding method and performance [J]. Journal of Power Sources, 2017, 341: 466-473. |
78 | GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2: internal cell signals and utility for state estimation [J]. Journal of Power Sources, 2017, 341: 474-482. |
79 | SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention [J]. Journal of Power Sources, 2018, 405: 30-36. |
80 | LARSSON F, BERTILSSON S, FURLANI M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing [J]. Journal of Power Sources, 2018, 373: 220-231. |
81 | FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery [J]. Journal of Power Sources, 2018, 389: 106-119. |
82 | CUMMINGS S R, SWARTZ S L, FRANK N B, et al. Systems and methods for monitoring for a gas analyte: US20180003685A1[P]. 2018. |
83 | RAGHAVAN A, KIESEL P, LOCHBAUM A, et al. Battery management based on internal optical sensing: US09553465B2[P]. 2017. |
84 | WANG Z, HONG J, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z -score for electric vehicles [J]. Applied Energy, 2017, 196: 289-302. |
85 | 孙逢春,王震坡,刘鹏,等. 电动汽车远程监控系统中实时监控系统: CN202975803U[P]. 2013-06-05. |
SUN Fengchun,WANG Zhenpo,LIU Peng, et al. Real-time monitoring system in electric vehicle remote monitoring system: CN202975803U[P]. 2013-06-05. | |
86 | 沈阳. 基于GPRS网络电动汽车远程监控系统设计的研究 [D]. 上海: 上海交通大学,2013. |
SHEN Yang. Design of electric vehicle remote monitoring system based on GPRS network [D]. Shanghai: Shanghai Jiaotong University,2013. | |
87 | 吴建荣. 纯电动汽车远程监控系统设计及故障诊断方法研究[D]. 长春: 吉林大学,2011. |
WU Jianrong. Research on remote monitoring system design and fault diagnosis method of pure electric vehicle [D]. Changchun: Jilin University, 2011. | |
88 | 袁弘, 张明江, 李建祥, 等. 基于云服务的电动汽车电池安全预警系统设计[J].计算机应用与软件,2014,31(9):63-66. |
YUAN Hong, ZHANG Mingjiang, LI Jianxiang, et al. Design of battery safety early warning system for electric vehicles based on cloud service [J]. Computer Applications and Software, 2014,31(9):63-66. | |
89 | PHUNG T H, COLLET A, CREBIER J C. An optimized topology for next-to-next balancing of series-connected lithium-ion cells [J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4603-4613. |
90 | LIU P, SUN Z, WANG Z, et al. Entropy-based voltage fault diagnosis of battery systems for electric vehicles [J]. Energies, 2018, 11(1). |
91 | HONG J, WANG Z, LIU P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles [J]. Energies, 2017, 10(7). |
92 | LI X, DAI K, WANG Z, et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method [J]. Journal of Energy Storage, 2020, 27. |
93 | HONG J, WANG Z, CHEN W, et al. Multi‐fault synergistic diagnosis of battery systems based on the modified multi‐scale entropy [J]. International Journal of Energy Research, 2019, 43(14): 8350-8369. |
94 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Battery health prediction under generalized conditions using a Gaussian process transition model [J]. Journal of Energy Storage, 2019, 23: 320-328. |
95 | 卢明哲. 动力电池SOH估计及故障预测方法研究 [D]. 北京:北京工业大学, 2015. |
LU Mingzhe. Research on SOH estimation and fault prediction method of power battery [D]. Beijing: Beijing University of Technology, 2015. | |
96 | GAN N, SUN Z, ZHANG Z, et al. Data-driven fault diagnosis of lithium-ion battery over-discharge in electric vehicles [J]. IEEE Transactions on Power Electronics, 2021. |
97 | ZHAO Y, LIU P, WANG Z, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods [J]. Applied Energy, 2017, 207: 354-362. |
98 | LARSSON F, ANDERSON J, ANDERSSON P, et al. Thermal modelling of cell-to-cell fire propagation and cascading thermal runaway failure effects for lithium-ion battery cells and modules using fire walls [J]. Journal of The Electrochemical Society, 2016, 163(14): A2854-A2865. |
99 | YUAN C, WANG Q, WANG Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module [J]. Applied Thermal Engineering, 2019, 153: 39-50. |
100 | 高飞, 杨凯, 王康康, 等. 阻燃材料防止锂离子电池组热失控连锁反应研究 [J]. 合成材料老化与应用, 2018, 47(5): 4. |
GAO F, YANG K, WANG K K, et al. Study on flame retardant materials preventing thermal runaway chain reaction of lithium ion battery pack [J]. Aging and Application of Synthetic Materials, 2018, 47(5): 4. | |
101 | 李向梅, 乔羽, 汪书苹, 等. EPDM阻燃热防护材料在锂离子电池热失控中的研究 [J]. 北京理工大学学报, 2020, 40: 674-682. |
LI X M, QIAO Y, WANG S P, et al. Study on EPDM flame retardant thermal protection material for lithium ion battery thermal runaway [J]. Transactions of Beijing Institute of Technology, 2020, 40: 674-682. | |
102 | 杨凯, 赖铱麟, 张明杰, 等. 一种用于抑制电池热失控扩散的隔离材料: CN111320453A[P]. 2020-06-23. |
YANG K, LAI Iridin, ZHANG Mingjie, et al. An isolation material for inhibiting thermal runaway diffusion in batteries: CN111320453A[P]. 2020-06-23. | |
103 | FENG X, LU L, OUYANG M, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module [J]. Energy, 2016, 115: 194-208. |
104 | Weston Arthur Hermann. Cell separator for minimizing thermal runaway propagation within a battery pack:US8367239[P]. 2013-02-05. |
105 | Weston Arthur Hermann, Scott Ira Kohn, Vineet Haresh Mehta,et al. Thermal barrier structure for containing thermal runaway propagation within a battery pack: US8541126[P]. 2013-09-24. |
106 | HU H L, HWANG J D, WONG C C, et al. Protection structure forthermal dissipation and preventing thermal runaway diffusion in battery system: US8785026[P]. 2014-07-22. |
107 | 刘昱君,段强领,黎可,等.多种灭火剂扑救大容量锂离子电池火灾的实验研究[J].储能科学与技术,2018,7(6):1105-1112. |
LIU Y J, DUAN Q L, LI K, et al. Experimental study on large capacity lithium ion battery fire extinguishing with multiple extinguishing agents [J]. Energy Storage Science and Technology,2018,7(6):1105-1112. | |
108 | LUO W T, ZHU S B, GONG J H, et al. Research and development of fire extinguishing technology for power lithium batteries [J]. Procedia Engineering, 2018, 211: 531-537. |
109 | ZHU M X, ZHU S B, GONG J H, et al. Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist [J]. Procedia Engineering, 2018, 211: 1083-1090. |
110 | 郭莉, 吴静云, 黄峥, 等.不同压强细水雾对磷酸铁锂电池模组的灭火效果[J].高电压技术, 2021,47(3):1002-1011. |
GUO L, WU J Y, HUANG Z, et al. Fire extinguishing effect of water mist with different pressure on lithium iron phosphate battery module [J]. High Voltage Technology,2021,47(3):1002-1011. | |
111 | 姜乃文. 细水雾抑制空运锂电池火灾机理及自动控制研究 [D]. 天津: 中国民航大学, 2017. |
JIANG Naiwen. Study on fire suppression mechanism and automatic control of air-borne lithium battery by water mist [D]. Tianjin: Civil Aviation University of China, 2017. | |
112 | 于东兴,李毅,张少禹,等.七氟丙烷扑救锂离子动力电池火灾有效性研究[J].电源技术,2019,43(1):60-63. |
YU D X, LI Y, ZHANG S Y, et al. Study on the effectiveness of hfc-227ea in lithium-ion battery fire prevention [J]. Power Supply Technology,2019,43(1):60-63. | |
113 | 张绪祥. 基于SVM的锂电池仓火灾预警及灭火系统[D].西安: 长安大学,2019. |
ZHANG Xuxiang. Lithium battery warehouse fire warning and extinguishing system based on SVM [D]. Xi'an: Chang 'an University, 2019. | |
114 | 刘煜. 基于贝叶斯网络的车载电池舱智能灭火系统研究[D].西安: 长安大学,2018. |
LIU Yu. Research on intelligent fire extinguishing system of vehicle battery cabin based on bayesian network [D]. Xi'an: Chang'an University, 2018. | |
115 | 赵黎华,贾晓川,栗建永,等.具有自动灭火装置的锂电池试验箱设计[J].电源技术, 2013,37(11):1956-1958. |
ZHAO L H, JIA X C, LI J Y, et al. Design of lithium battery test chamber with automatic fire extinguishing device [J]. Power Supply Technology, 2013,37(11):1956-1958. | |
116 | 胡振恺,李勇琦,彭鹏.电池储能系统火灾预警与灭火系统设计[J].消防科学与技术,2020,39(10):1434-1438. |
HU Zhenkai, LI Yongqi, PENG Peng. Design of fire warning and extinguishing system for battery energy storage system [J]. Fire Science and Technology,2020,39(10):1434-1438. |
[1] | 胡林,谷子逸,王丹琦,王方,邹铁方,黄晶. 汽车安全性测评规程现状及趋势展望[J]. 汽车工程, 2024, 46(2): 187-200. |
[2] | 李致远, 鲁锐华, 余庆华, 颜伏伍. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. |
[3] | 刘启全,马建,赵轩,张凯,孟德安,相里康. 基于值率模型的电动汽车动力电池电压异常检测[J]. 汽车工程, 2023, 45(9): 1728-1739. |
[4] | 李达,邓钧君,张照生,刘鹏,王震坡. 电动车辆动力电池安全预警策略研究综述[J]. 汽车工程, 2023, 45(8): 1392-1407. |
[5] | 廉玉波,吴恺,曾董,李松,王溥希. 基于整车平台的动力电池平台化研究[J]. 汽车工程, 2023, 45(5): 807-813. |
[6] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[7] | 陈吉清,李子涵,兰凤崇,蒋心平,潘威,陈继开. 基于非线性降维IC特征的实车电池SOH估计[J]. 汽车工程, 2023, 45(2): 199-208. |
[8] | 兰凤崇,潘威,陈吉清. 基于Aseq2seq-PF的实车锂离子动力电池剩余使用寿命预测[J]. 汽车工程, 2023, 45(12): 2348-2356. |
[9] | 洪吉超,梁峰伟,杨海旭,李克瑞. 大数据驱动动力电池智能安全管理与控制方法研究[J]. 汽车工程, 2023, 45(10): 1845-1861. |
[10] | 廉玉波,凌和平,王钧斌,潘华,谢朝. 基于混合高斯-隐马尔可夫模型的动力电池实时热失控检测[J]. 汽车工程, 2023, 45(1): 139-146. |
[11] | 陈吉清,冼浩岚,兰凤崇. 均布模组式动力电池包热失控典型模式分析[J]. 汽车工程, 2022, 44(8): 1199-1211. |
[12] | 魏一凡,韩雪冰,卢兰光,王贺武,李建秋,欧阳明高. 面向碳中和的新能源汽车与车网互动技术展望[J]. 汽车工程, 2022, 44(4): 449-464. |
[13] | 曾祥兵,谢堃,张伟,徐俊超,张培根,孙正明. 新型动力电池热管理系统设计及性能研究[J]. 汽车工程, 2022, 44(4): 476-481. |
[14] | 赵杨,徐小飞,吴海龙,葛宇龙. 新能源汽车高压线束在机械外载下失效试验及仿真研究[J]. 汽车工程, 2022, 44(4): 591-600. |
[15] | 王亚楠,韩雪冰,卢兰光,冯旭宁,李建秋,欧阳明高. 电动汽车动力电池研究展望:智能电池、智能管理与智慧能源[J]. 汽车工程, 2022, 44(4): 617-637. |
|