汽车工程 ›› 2023, Vol. 45 ›› Issue (8): 1392-1407.doi: 10.19562/j.chinasae.qcgc.2023.08.010
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
李达1,2,邓钧君1,2,张照生1,2(),刘鹏1,2,王震坡1,2
收稿日期:
2022-12-30
修回日期:
2023-03-03
出版日期:
2023-08-25
发布日期:
2023-08-17
通讯作者:
张照生
E-mail:zhangzhaosheng@bit.edu.cn
基金资助:
Da Li1,2,Junjun Deng1,2,Zhaosheng Zhang1,2(),Peng Liu1,2,Zhenpo Wang1,2
Received:
2022-12-30
Revised:
2023-03-03
Online:
2023-08-25
Published:
2023-08-17
Contact:
Zhaosheng Zhang
E-mail:zhangzhaosheng@bit.edu.cn
摘要:
动力电池安全问题已经成为制约电动车辆发展的关键要素。准确及时的电池安全预警可以保障乘员生命财产安全以及提升电动车辆安全水平。本文对电动车辆电池安全预警策略进行了全面综述。首先,综述了电池安全状态的定义,并提出了本综述框架;之后,详细梳理了电池安全特征与安全影响因素分析、电池建模方法、电池安全风险评估/预测方法,总结了各类方法的优缺点;最后,总结了目前的进展与不足,提出了电动车辆动力电池安全预警技术发展趋势,并阐述了新型传感器技术、多因素融合的电池安全预警方法和“端-边-云”融合的电池安全预警体系。本综述为电动车辆动力电池安全预警策略的进一步研究提供参考。
李达,邓钧君,张照生,刘鹏,王震坡. 电动车辆动力电池安全预警策略研究综述[J]. 汽车工程, 2023, 45(8): 1392-1407.
Da Li,Junjun Deng,Zhaosheng Zhang,Peng Liu,Zhenpo Wang. Review on Power Battery Safety Warning Strategy in Electric Vehicles[J]. Automotive Engineering, 2023, 45(8): 1392-1407.
表1
电池安全等级"
等级 | 描述 | 电池安全问题严重性分类标准 |
---|---|---|
0 | 正常 | 没有效果。不会丧失功能。 |
1 | 可逆的功能性损伤 | 没有缺陷;无渗漏;无产气、无着火、无火焰;没有破裂;没有爆炸;没有放热反应或热失控。电池功能暂时丧失。需要复位保护装置。 |
2 | 不可逆损伤 | 无渗漏;无产气、无着火、无火焰;没有破裂;没有爆炸;没有放热反应或热失控。不可逆损害。需要修理。 |
3 | 泄漏 | 无产气、无着火、无火焰;没有破裂;没有爆炸。电解质质量减轻<50%。轻微烟雾(电解质=溶剂+盐)。 |
4 | 产气 | 无着火、无火焰;没有破裂;没有爆炸。电解质质量减轻≥50%。浓烟(电解质=溶剂+盐)。 |
5 | 着火或火焰 | 没有破裂;没有爆炸。 |
6 | 破裂 | 没有爆炸。电池可能分解,但速度很慢,没有高热量或高动能的飞行部件。 |
7 | 爆炸 | 爆炸(即在具有外部破坏性的热力和动能的作用下,电池解体)。暴露出超过职业安全与健康标准限制的有毒物质。 |
1 | 白旻,张旻昱,王晓超. 碳中和背景下全球新能源汽车产业发展政策与趋势[J].信息技术与标准化,2021(12):13-20. |
BAI M,ZHANG M,WANG X. Development policies and trends of global new energy vehicle industry in the context of carbon neutrality[J]. Information Technology and Standardization,2021(12):13-20. | |
2 | IEA. Global EV outlook 2022[R/OL]. (2022-05-01)[2023-05-31]. https://www.iea.org/reports/global-ev-outlook-2022. |
3 | 王震坡,刘鹏,张照生. 新能源汽车大数据分析与应用技术[M]. 北京:机械工业出版社,2018. |
WANG Z,LIU P,ZHANG Z. Big data analysis and application technology of new energy vehicles [M]. Beijing:China Machine Press,2018. | |
4 | 刘鹏. 电动汽车动力电池组循环寿命模型与应用研究[D]. 北京:北京理工大学,2011. |
LIU P. Research on cycle life model and application of electric vehicle power battery pack[D]. Beijing:Beijing Institute of Technology,2011. | |
5 | 魏婧雯. 储能锂电池系统状态估计与热故障诊断研究[D]. 合肥:中国科学技术大学,2019. |
WEI J. Research on state estimation and thermal fault diagnosis of lithium battery system [D]. Hefei:University of Science and Technology of China,2019. | |
6 | 熊瑞. 动力电池管理系统核心算法 [M].2版. 北京:机械工业出版社,2022. |
XIONG R. Core algorithm of power battery system [M]. 2nd ed.Beijing:China Machine Press,2018. | |
7 | HANNAN M A,LIPU M S H,HUSSAIN A,et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:challenges and recommendations[J]. Renewable and Sustainable Energy Reviews,2017,78:834-854. |
8 | XIONG R,LI L,TIAN J. Towards a smarter battery management system:a critical review on battery state of health monitoring methods[J]. Journal of Power Sources,2018,405:18-29. |
9 | 陈泽宇,熊瑞,孙逢春. 电动汽车电池安全事故分析与研究现状[J]. 机械工程学报,2019,55(24):93-104. |
CHEN Z,XIONG R,SUN F. Research status and analysis for battery safety accidents in electric vehicles[J]. Journal of Mechanical Engineering,2019,55(24):93-104. | |
10 | 孙振宇,王震坡,刘鹏,等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报,2021,57(14):87-104. |
SUN Z,WANG Z,LIU P,et al. Review on fault diagnosis of new energy vehicle power battery system[J]. Chinese Journal of Mechanical Engineering,2021,57(14):87-104. | |
11 | ZHANG J,ZHANG L,SUN F,et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application[J]. IEEE Access,2018,6:23848-23863. |
12 | BERECIBAR M,GANDIAGA I,VILLARREAL I,et al. Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews,2016,56:572-587. |
13 | CHANG W Y. The state of charge estimating methods for battery:a review[J]. International Scholarly Research Notices,2013,2013. |
14 | DAI H,JIANG B,HU X,et al. Advanced battery management strategies for a sustainable energy future:multilayer design concepts and research trends[J]. Renewable and Sustainable Energy Reviews,2021,138:110480. |
15 | ASHTIANI C. Analysis of battery safety and hazards' risk mitigation[J]. ECS Transactions,2008,11(19):1. |
16 | LI W,ZHU J,XIA Y,et al. Data-driven safety envelope of lithium-ion batteries for electric vehicles[J]. Joule,2019,3(11):2703-2715. |
17 | CABRERA-CASTILLO E,NIEDERMEIER F,JOSSEN A. Calculation of the state of safety (SOS) for lithium ion batteries[J]. Journal of Power Sources,2016,324:509-520. |
18 | MENG H,YANG Q,ZIO E,et al. An integrated methodology for dynamic risk prediction of thermal runaway in lithium-ion batteries[J]. Process Safety and Environmental Protection, 2023,171:385-395. |
19 | HUANG W,FENG X,PAN Y,et al. Early warning of battery failure based on venting signal[J]. Journal of Energy Storage,2023,59:106536. |
20 | 赖铱麟,杨凯,刘皓,等. 锂离子电池安全预警方法综述[J]. 储能科学与技术,2020,9(6):1926. |
LAI Y,YANG K,LIU H,et al. Lithium-ion battery safety warning methods review[J]. Energy Storage Science and Technology,2020,9(6):1926. | |
21 | HU X,ZHANG K,LIU K,et al. Advanced fault diagnosis for lithium-ion battery systems:a review of fault mechanisms,fault features,and diagnosis procedures[J]. IEEE Industrial Electronics Magazine,2020,14(3):65-91. |
22 | LI Y,HAN X,FENG X,et al. Errors in the reference electrode measurements in real lithium-ion batteries[J]. Journal of Power Sources,2020,481:228-233. |
23 | JINDAL P,BHATTACHARYA J. Review—understanding the thermal runaway behavior of Li-ion batteries through experimental techniques[J]. Journal of The Electrochemical Society,2019,166:A2165-A2193. |
24 | 陈天雨,冯旭宁,欧阳明高,等. 基于模型的动力电池系统多尺度热安全设计[J].中国机械工程,2018,29(15):1840-1846. CHEN T,FENG X,OUYANG M,et al. Multi-scale thermal safety design for power battery systems based on model[J]. China Mechanical Engineering,2018,29(15):1840-1846. |
25 | LIAO Z,ZHANG S,LI K,et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources,2019,436:226-235. |
26 | FENG X,ZHENG S,REN D,et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy,2019,246:53-64. |
27 | HUANG P,CHEN H,VERMA A,et al. Non-dimensional analysis of the criticality of Li-ion battery thermal runaway behavior[J]. Journal of Hazardous Materials,2019,369:268-278. |
28 | WANG J,HU D,SHEN D,et al. Optimization methodology for lithium-ion battery temperature sensor placement based on thermal management and thermal runaway requirement[C]. IEEE 2020 11th International Conference on Mechanical and Aerospace Engineering (ICMAE),2020:254-259. |
29 | NASCIMENTO M,FERREIRA M,PINTO J. Temperature fiber sensing of lithium-ion batteries under different environmental and operating conditions[J]. Applied Thermal Engineering,2019,149:1236-1243. |
30 | PAN Y,FENG X,ZHANG M,et al. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections[J]. Journal of Cleaner Production,2020,255:120277. |
31 | GAO W,ZHENG Y,OUYANG M. Micro-short circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics,2018,66(3):2132-2142. |
32 | WEI X,WANG X,DAI H. Practical on-board measurement of lithium ion battery impedance based on distributed voltage and current sampling[J]. Energies,2018,11:1101-1114. |
33 | 陈英杰,杨耕,祖海鹏,等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报,2018,33(17):3976-3988. |
CHEN Y,YANG G,ZU H,et al. Estimation of open circuit voltage and internal resistance of lithium ion batteries based on constant current experiment[J]. Transactions of China Electrotechnical Society,2018,33(17):3976-3988. | |
34 | KHALEGHI S,FIROUZ Y,VAN MIERLO J,et al. Developing a real-time data-driven battery health diagnosis method,using time and frequency domain condition indicators[J]. Applied Energy,2019,255:113-118. |
35 | XIONG R,SUN W,YU Q,et al. Research progress,challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy,2020,279:115-121. |
36 | SCHMID M,KNEIDINGER H,ENDISCH C. Data-driven fault diagnosis in battery systems through cross-cell monitoring[J]. IEEE Sensors Journal,2021,21:1829-1837. |
37 | HONG J,WANG Z,LIU P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles[J]. Energies,2017,10:919. |
38 | LI D,ZHANG Z,LIU P,et al. DBSCAN-based thermal runaway diagnosis of battery systems for electric vehicles[J]. Energies,2019,12:2977. |
39 | FENG X,REN D,HE X,et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule,2020,4(4):743-770. |
40 | LIU K,LIU Y,LIN D,et al. Materials for lithium-ion battery safety[J]. Science Advances,2018,4(6):eaas9820. |
41 | FINEGAN D P,ZHU J,FENG X,et al. The application of data-driven methods and physics-based learning for improving battery safety[J]. Joule,2021,5(2):316-329. |
42 | SALUCCI C B,BAKDI A,GLAD I K,et al. A novel semi-supervised learning approach for state of health monitoring of maritime lithium-ion batteries[J]. Journal of Power Sources,2023,556:232429. |
43 | FENG X,OUYANG M,LIU X,et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:a review[J]. Energy Storage Materials,2018,10:246-267. |
44 | WANG Q,MAO B,STOLIAROV S I,et al. A review of lithium-ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science,2019,73:95-131. |
45 | DUAN X,WANG H,JIA Y,et al. A multiphysics understanding of internal short circuit mechanisms in lithium-ion batteries upon mechanical stress abuse[J]. Energy Storage Materials,2022,45:667-679. |
46 | LI H,ZHOU D,ZHANG M,et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse[J]. Energy,2023,263:126027. |
47 | ZHANG G,WEI X,CHEN S,et al. Revealing the impact of slight electrical abuse on the thermal safety characteristics for lithium-ion batteries[J]. ACS Applied Energy Materials,2021,4(11):12858-12870. |
48 | SHELKEA A V,BUSTON J E H,GILL J,et al. Combined numerical and experimental studies of 21700 lithium-ion battery thermal runaway induced by different thermal abuse[J]. International Journal of Heat and Mass Transfer,2022,194:123099. |
49 | XIA Q,REN Y,WANG Z,et al. Safety risk assessment method for thermal abuse of lithium-ion battery pack based on multiphysics simulation and improved bisection method[J]. Energy,2023,264:126228. |
50 | XU X,SUN X,ZHAO L,et al. Research on thermal runaway characteristics of NCM lithium-ion battery under thermal-electrical coupling abuse[J]. Ionics,2022,28(12):5449-5467. |
51 | ZHANG D,LI W,HAN X,et al. Evolving Elman neural networks based state-of-health estimation for satellite lithium-ion batteries[J]. Journal of Energy Storage,2023,59:106571. |
52 | FAN G,ZHANG X. Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network[J]. Applied Energy,2023,330:120308. |
53 | SARA A,MARTIN P,AMANDINE L,et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. Journal of Power Sources,2018,399:264-273. |
54 | GAO N,ABBOUD A W,MATTEI G S,et al. Fast diagnosis of failure mechanisms and lifetime prediction of Li metal batteries[J]. Small Methods,2021,5(2):2000807. |
55 | WANG X,WEI X,ZHU J,et al. A review of modeling,acquisition,and application of lithium-ion battery impedance for onboard battery management[J]. ETransportation,2021,7:100093. |
56 | ADAIKKAPPAN M,SATHIYAMOORTHY N. Modeling,state of charge estimation,and charging of lithium-ion battery in electric vehicle:a review[J]. International Journal of Energy Research,2022,46(3):2141-2165. |
57 | FOTOUHI A,AUGER D J,PROPP K,et al. A review on electric vehicle battery modelling:from lithium-ion toward lithium-sulphur[J]. Renewable and Sustainable Energy Reviews,2016,56:1008-1021. |
58 | DOYLE M,FULLER T F,NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society,1993,140(6):1526. |
59 | 袁世斐. 基于等效电路-简化电化学模型的锂离子电池模拟和仿真[D]. 上海:上海交通大学,2016. |
YUAN S. Based on the equivalent circuit-simplified electrochemical lithium-ion battery of the model and simulation [D]. Shanghai: Shanghai Jiaotong University,2016. | |
60 | SANTHANAGOPALAN S,WHITE R E. Online estimation of the state of charge of a lithium ion cell[J]. Journal of Power Sources,2006,161(2):1346-1355. |
61 | GUO M,SIKHA G,WHITE R E. Single-particle model for a lithium-ion cell:thermal behavior[J]. Journal of The Electrochemical Society,2010,158(2):A122. |
62 | MOURA S J,ARGOMEDO F B,KLEIN R,et al. Battery state estimation for a single particle model with electrolyte dynamics[J]. IEEE Transactions on Control Systems Technology,2016,25(2):453-468. |
63 | HAN X,OUYANG M,LU L,et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. part I:diffusion simplification and single particle model[J]. Journal of Power Sources,2015,278:802-813. |
64 | TANIM T R,RAHN C D,WANG C Y. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model[J]. Energy,2015,80:731-739. |
65 | RAHIMIAN S K,RAYMAN S,WHITE R E. Extension of physics-based single particle model for higher charge–discharge rates[J]. Journal of Power Sources,2013,224:180-194. |
66 | LI J,LOTFI N,LANDERS R G,et al. A single particle model for lithium-ion batteries with electrolyte and stress-enhanced diffusion physics[J]. Journal of The Electrochemical Society,2017,164(4):A874. |
67 | SPELTINO C,DI DOMENICO D,FIENGO G,et al. Comparison of reduced order lithium-ion battery models for control applications[C]. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. IEEE,2009:3276-3281. |
68 | SMITH K A,RAHN C D,WANG C Y. Control oriented 1D electrochemical model of lithium ion battery[J]. Energy Conversion and Management,2007,48(9):2565-2578. |
69 | KEHS M A,BEENEY M D,FATHY H K. Computational efficiency of solving the DFN battery model using descriptor form with Legendre polynomials and Galerkin projections[C]. 2014 American Control Conference. IEEE,2014:260-267. |
70 | XIA L,NAJAFI E,BERGVELD H J,et al. A computationally efficient implementation of an electrochemistry-based model for Lithium-ion batteries[J]. IFAC-PapersOnLine,2017,50(1):2169-2174. |
71 | LIMOGE D W,BI P Y,ANNASWAMY A M,et al. A reduced-order model of a lithium-ion cell using the absolute nodal coordinate formulation approach[J]. IEEE Transactions on Control Systems Technology,2017,26(3):1001-1014. |
72 | DENG J,BAE C,MARCICKI J,et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles[J]. Nature Energy,2018,3(4):261-266. |
73 | HE H,XIONG R,FAN J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies,2011,4(4):582-598. |
74 | JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources,2002,110(2):321-329. |
75 | LIAW B Y,NAGASUBRAMANIAN G,JUNGST R G,et al. Modeling of lithium ion cells - a simple equivalent-circuit model approach[J]. Solid State Ionics,2004,175(1-4):835-839. |
76 | XIA B,SUN Z,ZHANG R,et al. A cubature particle filter algorithm to estimate the state of the charge of lithium-ion batteries based on a second-order equivalent circuit model[J]. Energies,2017,10(4):457. |
77 | ANDRE D,MEILER M,STEINER K,et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. experimental investigation[J]. Journal of Power Sources,2011,196(12):5334-5341. |
78 | ANDRE D,MEILER M,STEINER K,et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II:modelling[J]. Journal of Power Sources,2011,196(12):5349-5356. |
79 | LIU C,HU M,JIN G,et al. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model[J]. Journal of Energy Storage,2021,41:102954. |
80 | BRUCH M,MILLET L,KOWAL J,et al. Novel method for the parameterization of a reliable equivalent circuit model for the precise simulation of a battery cell's electric behavior[J]. Journal of Power Sources,2021,490:229513. |
81 | ZHOU S,CHEN Z,HUANG D,et al. A fault tolerant SOC estimation method for series-parallel connected li-ion battery pack[J]. IEEE Transactions on Power Electronics,2021. |
82 | MORAL C G,LABORDA D F,ALONSO L S,et al. Battery internal resistance estimation using a battery balancing system based on switched capacitors[J]. IEEE Transactions on Industry Applications,2020,56(5):5363-5374. |
83 | MIYAKE T,SUZUKI T,FUNABASHI S,et al. Bayesian estimation of model parameters of equivalent circuit model for detecting degradation parts of lithium-ion battery[J]. IEEE Access,2021,9:159699-159713. |
84 | WANG Q K,HE Y J,SHEN J N,et al. A unified modeling framework for lithium-ion batteries:an artificial neural network based thermal coupled equivalent circuit model approach[J]. Energy,2017,138:118-132. |
85 | ZHANG C,ZHU Y,DONG G,et al. Data-driven lithium-ion battery states estimation using neural networks and particle filtering[J]. International Journal of Energy Research,2019,43(14):8230-8241. |
86 | IAN G,YOSHUA B,AARON C. Deep learning:adaptive computation and machine learning series[M]. Beijing:People Post Press,2018. |
87 | BOUJOUDAR Y,ELMOUSSAOUI H,LAMHAMDI T. Lithium-ion batteries modeling and state of charge estimation using artificial neural network[J]. International Journal of Electrical and Computer Engineering,2019,9(5):3415. |
88 | KLASS V,BEHM M,LINDBERGH G. Capturing lithium-ion battery dynamics with support vector machine-based battery model[J]. Journal of Power Sources,2015,298:92-101. |
89 | WANG J,CHEN Q,CAO B. Support vector machine based battery model for electric vehicles[J]. Energy Conversion and Management,2006,47(7):858-864. |
90 | HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural computation,1997,9(8):1735-1780. |
91 | HEINRICH F,NOERING F K D,PRUCKNER M,et al. Unsupervised data-preprocessing for long short-term memory based battery model under electric vehicle operation[J]. Journal of Energy Storage,2021,38:102598. |
92 | KRIZHEVSKY A,SUTSKEVER I,HINTON G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems,2012,25(2). |
93 | REN L,DONG J,WANG X,et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics,2020,17(5):3478-3487. |
94 | TU H,MOURA S,FANG H. Integrating electrochemical modeling with machine learning for lithium-ion batteries[C]. 2021 American Control Conference (ACC). IEEE,2021:4401-4407. |
95 | NI Y,XU J,ZHU C,et al. Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data-driven model[J]. Applied Energy,2022,305:117922. |
96 | LYU Z,GAO R,CHEN L. Li-ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method[J]. IEEE Transactions on Power Electronics,2020,36(6):6228-6240. |
97 | DUAN B,LI Z,GU P,et al. Evaluation of battery inconsistency based on information entropy[J]. Journal of Energy Storage,2018,16:160-166. |
98 | LU L,HAN X,LI J,et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources,2013,226:272-288. |
99 | CHEN Z,XIONG R,TIAN J,et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy,2016,184:365-374. |
100 | SON J,DU Y. Model-based stochastic fault detection and diagnosis of lithium-ion batteries[J]. Processes,2019,7(1):38. |
101 | FENG X,PAN Y,HE X,et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage,2018,18:26-39. |
102 | YANG R,XIONG R,HE H,et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production,2018,187:950-959. |
103 | WANG Y,TIAN J,CHEN Z,et al. Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles[J]. Measurement,2019,131:443-451. |
104 | LIU Z,HE H. Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter[J]. Applied Energy,2017,185:2033-2044. |
105 | RAIJMAKERS L H J,DANILOV D L,VAN LAMMEREN J P M,et al. Non-zero intercept frequency:an accurate method to determine the integral temperature of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics,2016,63(5):3168-3178. |
106 | BEELEN H,RAIJMAKERS L H J,DONKERS M C F,et al. A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries[J]. Applied Energy,2016,175:128-140. |
107 | XIA B,SHANG Y,NGUYEN T,et al. A correlation based fault detection method for short circuits in battery packs[J]. Journal of Power Sources,2017,337:1-10. |
108 | GONG X,XIONG R,MI C C. A data-driven bias-correction-method-based lithium-ion battery modeling approach for electric vehicle applications[J]. IEEE Transactions on Industry Applications,2015,52(2):1759-1765. |
109 | HU X,JIANG J,CAO D,et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics,2015,63(4):2645-2656. |
110 | KANG Y,DUAN B,ZHOU Z,et al. A multi-fault diagnostic method based on an interleaved voltage measurement topology for series connected battery packs[J]. Journal of Power Sources,2019,417:132-144. |
111 | SHANG Y,LU G,KANG Y,et al. A multi-fault diagnosis method based on modified sample entropy for lithium-ion battery strings[J]. Journal of Power Sources,2020,446:227275. |
112 | WU J,LI K,JIANG Y,et al. Large-scale battery system development and user-specific driving behavior analysis for emerging electric-drive vehicles[J]. Energies,2011,4(5):758-779. |
113 | LI R,WU J,WANG H,et al. Reliability assessment and failure analysis of lithium iron phosphate batteries[J]. Information Sciences,2014,259:359-368. |
114 | ZHAO Y,LIU P,WANG Z,et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy,2017,207:354-362. |
115 | ZHENG Y,HAN X,LU L,et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources,2013,223:136-146. |
116 | LIU P,WANG J,WANG Z,et al. High-dimensional data abnormity detection based on improved variance-of-angle (VOA) algorithm for electric vehicles battery[C]. 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE,2019:5072-5077. |
117 | LIU P,SUN Z,WANG Z,et al. Entropy-based voltage fault diagnosis of battery systems for electric vehicles[J]. Energies,2018,11(1):136. |
118 | FENG F,HU X,HU L,et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews,2019,112:102-113. |
119 | NASCIMENTO M,FERREIRA M S,PINTO J L. Real time thermal monitoring of lithium batteries with fiber sensors and thermocouples:a comparative study[J]. Measurement,2017,111:260-263. |
120 | NASCIMENTO M,FERREIRA M S,PINTO J L. Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions[J]. Applied Thermal Engineering,2019,149:1236-1243. |
121 | RAGHAVAN A,KIESEL P,SOMMER L W,et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1:cell embedding method and performance[J]. Journal of Power Sources,2017,341:466-473. |
122 | GANGULI A,SAHA B,RAGHAVAN A,et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2:internal cell signals and utility for state estimation[J]. Journal of Power Sources,2017,341:474-482. |
123 | LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444. |
124 | PEDREGOSA F,VAROQUAUX G,GRAMFORT A,et al. Scikit-learn:machine learning in Python[J]. The Journal of Machine Learning Research,2011,12:2825-2830. |
125 | TOBAR F,CASTRO I,SILVA J,et al. Improving battery voltage prediction in an electric bicycle using altitude measurements and kernel adaptive filters[J]. Pattern Recognition Letters,2018,105:200-206. |
126 | ZHAO R,KOLLMEYER P J,LORENZ R D,et al. A compact unified methodology via a recurrent neural network for accurate modeling of lithium-ion battery voltage and state-of-charge[C]. 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE,2017:5234-5241. |
127 | CHEN Z,XIONG R,LU J,et al. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J]. Applied Energy,2018,213:375-383. |
128 | SUN J,WEI G,PEI L,et al. Online internal temperature estimation for lithium-ion batteries based on kalman filter[J]. Energies,2015,8(5):4400-15. |
129 | MELCHER A,ZIEBERT C,ROHDE M,et al. Modeling and simulation of the thermal runaway behavior of cylindrical Li-ion cells- computing of critical parameters[J]. Energies,2016,9(4):292. |
130 | KOCH S,FILL A,BIRKE K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources,2018,398:106-112. |
131 | OUYANG D,HE Y,CHEN M,et al. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions[J]. Journal of Thermal Analysis and Calorimetry,2018,132(1):65-75. |
132 | OUYANG M,REN D,LU L,et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+ LiyMn2O4 composite cathode[J]. Journal of Power Sources,2015,279:626-635. |
133 | REN D,FENG X,LU L,et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of Power Sources,2017,364:328-340. |
134 | QI C,ZHU Y,GAO F,et al. Mathematical model for thermal behavior of lithium ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer,2018,124:552-563. |
135 | CHEN M,SUN Q,LI Y,et al. A thermal runaway simulation on a lithium titanate battery and the battery module[J]. Energies,2015,8(1):490-500. |
136 | SEO M,GOH T,PARK M,et al. Detection of internal short circuit in lithium-ion battery using model-based switching model method[J]. Energies,2017,10(1):76. |
137 | FENG X,SUN J,OUYANG M,et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium-ion battery module[J]. Journal of Power Sources,2015,275:261-273. |
138 | WILKE S,SCHWEITZER B,KHATEEB S,et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material:an experimental study[J]. Journal of Power Sources,2017,340:51-59. |
139 | YAO L,WANG Z,MA J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources,2015,293:548-561. |
140 | FENG X,HE X,OUYANG M,et al. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy,2015,154:74-91. |
141 | FENG X,LU L,OUYANG M,et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy,2016,115(1):194-208. |
142 | ZHENG Y,GAO W,OUYANG M,et al. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter[J]. Journal of Power Sources,2018,383:50-58. |
143 | GAO W,ZHENG Y,OUYANG M,et al. Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics,2018,66(3):2132-2142. |
144 | WANG S,FERNANDEZ C,CHEN M,et al. A novel safety anticipation estimation method for the aerial lithium-ion battery pack based on the real-time detection and filtering[J]. Journal of Cleaner Production,2018,185:187-197. |
145 | LI D,DENG J,ZHANG Z,et al. Battery safety risk assessment in real-world electric vehicles based on abnormal internal resistance using proposed robust estimation method and hybrid neural networks[J]. IEEE Transactions on Power Electronics,2023. |
146 | WANG Z,HONG J,LIU P,et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy,2017,196:289-302. |
147 | LI D,ZHANG Z,WANG Z,et al. Timely thermal runaway prognosis for battery systems in real-world electric vehicles based on temperature abnormality[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2023,11:120-130. Doi:10.1109/JESTPE.2022.3153337. |
148 | HONG J,WANG Z,YAO Y. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy,2019,251:113381. |
149 | HONG J,WANG Z,CHEN W,et al. Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks[J]. Applied Energy,2019,254:113648. |
150 | LI D,ZHANG Z,LIU P,et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transactions on Power Electronics,2020,36(2):1303-1315. |
151 | LI D,LIU P,ZHANG Z,et al. Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms[J]. IEEE Transactions on Power Electronics,2022,37(7):8513-8525. |
152 | SHELKEA A V,BUSTON J E H,GILL J,et al. Combined numerical and experimental studies of 21700 lithium-ion battery thermal runaway induced by different thermal abuse[J]. International Journal of Heat and Mass Transfer,2022,194:123099. |
153 | TANIM T R,RAHN C D,WANG C Y. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model[J]. Energy,2015,80:731-739. |
154 | BACCOUCHE I, JEMMALI S, MANAI B, et al. Li-ion battery modeling and characterization: an experimental overview on NMC battery[J]. International Journal of Energy Research, 2022, 46(4): 3843-3859. |
[1] | 李致远, 鲁锐华, 余庆华, 颜伏伍. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. |
[2] | 刘启全,马建,赵轩,张凯,孟德安,相里康. 基于值率模型的电动汽车动力电池电压异常检测[J]. 汽车工程, 2023, 45(9): 1728-1739. |
[3] | 廉玉波,吴恺,曾董,李松,王溥希. 基于整车平台的动力电池平台化研究[J]. 汽车工程, 2023, 45(5): 807-813. |
[4] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[5] | 陈吉清,李子涵,兰凤崇,蒋心平,潘威,陈继开. 基于非线性降维IC特征的实车电池SOH估计[J]. 汽车工程, 2023, 45(2): 199-208. |
[6] | 兰凤崇,潘威,陈吉清. 基于Aseq2seq-PF的实车锂离子动力电池剩余使用寿命预测[J]. 汽车工程, 2023, 45(12): 2348-2356. |
[7] | 洪吉超,梁峰伟,杨海旭,李克瑞. 大数据驱动动力电池智能安全管理与控制方法研究[J]. 汽车工程, 2023, 45(10): 1845-1861. |
[8] | 陈吉清,冼浩岚,兰凤崇. 均布模组式动力电池包热失控典型模式分析[J]. 汽车工程, 2022, 44(8): 1199-1211. |
[9] | 曾祥兵,谢堃,张伟,徐俊超,张培根,孙正明. 新型动力电池热管理系统设计及性能研究[J]. 汽车工程, 2022, 44(4): 476-481. |
[10] | 王亚楠,韩雪冰,卢兰光,冯旭宁,李建秋,欧阳明高. 电动汽车动力电池研究展望:智能电池、智能管理与智慧能源[J]. 汽车工程, 2022, 44(4): 617-637. |
[11] | 贾子润,王震坡,王秋诗,黎小慧,孙逢春. 新能源汽车动力电池热失控机理和安全风险管控方法的研究[J]. 汽车工程, 2022, 44(11): 1689-1705. |
[12] | 舒强,王艺帆,梁元. 我国电动汽车动力电池安全标准现状及展望[J]. 汽车工程, 2022, 44(11): 1706-1715. |
[13] | 黄冉军, 周维, 王旭. 一种改进的动力电池阻抗参数和荷电状态分层在线联合估计方法*[J]. 汽车工程, 2020, 42(8): 1000-1007. |
[14] | 王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析*[J]. 汽车工程, 2020, 42(12): 1606-1620. |
[15] | 朱晓庆, 王震坡, 王聪, 易密. 三元锂离子动力电池过充行为特性实验研究*[J]. 汽车工程, 2019, 41(5): 582-589. |
|