汽车工程 ›› 2020, Vol. 42 ›› Issue (12): 1606-1620.doi: 10.19562/j.chinasae.qcgc.2020.12.002
王震坡, 袁昌贵, 李晓宇
收稿日期:
2020-02-26
修回日期:
2020-05-25
出版日期:
2020-12-25
发布日期:
2021-01-13
通讯作者:
李晓宇,博士研究生,E-mail:xiaoyu_li187@163.com
基金资助:
Wang Zhenpo, Yuan Changgui, Li Xiaoyu
Received:
2020-02-26
Revised:
2020-05-25
Online:
2020-12-25
Published:
2021-01-13
摘要: 动力电池安全管理是保证新能源汽车安全运行的重要手段,直接影响着整车耐久性和可靠性。本文从动力电池安全概念、关键技术和未来发展趋势3方面进行综述,将动力电池安全研究关键技术归纳为热失控的机理与控制措施和防护结构分别展开阐述,并对比剖析现有关键技术的成就及不足;针对当前动力电池安全管理所面临的挑战,提出未来电池安全管理发展趋势——从机理分析到系统优化设计,从被动安全防护到主动风险预测。
王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析*[J]. 汽车工程, 2020, 42(12): 1606-1620.
Wang Zhenpo, Yuan Changgui, Li Xiaoyu. An Analysis on Challenge and Development Trend of Safety Management Technologies for Traction Battery in New Energy Vehicles[J]. Automotive Engineering, 2020, 42(12): 1606-1620.
[1] 万钢. 新时代推进我国新能源汽车发展的新思考 [J]. 汽车工程学报, 2018, 8(4):235-238. WAN G. New thoughts on promoting the development of China’s new energy vehicles in the new era [J]. Chinese Journal of Automotive Engineering, 2018, 8(4):235-238. [2] DU J, OUYANG D. Progress of Chinese electric vehicles industrialization in 2015:a review [J]. Applied Energy, 2017, 188:529-546. [3] DUAN J, TANG X, DAI H, et al. Building safe lithium-ion batteries for electric vehicles:a review [J]. Electrochemical Energy Reviews, 2020, 3:1-42. [4] DENG J, BAE C, MARCICKI J, et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles [J]. Nature Energy, 2018, 3(4):261-266. [5] 何向明, 冯旭宁, 欧阳明高. 车用锂离子动力电池系统的安全性 [J]. 科技导报, 2016, 34(6):32-38. HE X, XU N, OUYANG M. On the safety issues of lithium ion battery [J]. Science & Technology Review, 2016, 34(6):32-38. [6] LI X, WANG Z, YAN J. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression [J]. Journal of Power Sources, 2019, 421:56-67. [7] 杨坤, 杨林, 施一新,等. 电动汽车动力电池组单点绝缘故障定位方法 [J]. 汽车工程, 2017, 39(10):1136-1140. YANG K, YANG L, SHI Y, et al. A single-point insulation fault locating scheme for power battery pack in electric vehicle [J]. Automotive Engineering, 2017, 39(10):1136-1140. [8] HU X, ZHANG K, LIU K, et al. Advanced fault diagnosis for lithium-ion battery systems [J]. 2020, DOI:10.36227/techrxiv.11777448. [9] 陈泽宇, 熊瑞, 孙逢春. 电动汽车电池安全事故分析与研究现状 [J]. 机械工程学报, 2019, 55(24):93-104,116. CHEN Z, XIONG R, SUN F. Research status and analysis for battery safety accidents in electric vehicles [J]. Journal of Mechanical Engineering, 2019, 55(24):93-104,116. [10] FENG F, HU X, HU L, et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs [J]. Renewable and Sustainable Energy Reviews, 2019, 112:102-113. [11] 张旭. 基于系统复杂性分析的锂电池组状态估计与安全管理 [D]. 北京:中国科学技术大学, 2018. ZHANG X. Lithium-ion battery pack states estimation and safety management based on system complexity analysis [D]. Beijing:University of Science and Technology of China, 2018. [12] HU X, FENG F, LIU K, et al. State estimation for advanced battery management:key challenges and future trends [J]. Renewable and Sustainable Energy Reviews, 2019, 114:109334. [13] 李志杰, 陈吉清, 兰凤崇, 等. 机械外力下动力电池包的系统安全性分析与评价 [J]. 机械工程学报, 2019(12):16. LI Z,CHEN J, LAN F, et al. Analysis and evaluation on system safety of power battery pack under mechanical loading [J]. Journal of Mechanical Engineering, 2019(12):16. [14] HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:challenges and recommendations [J]. Renewable and Sustainable Energy Reviews, 2017, 78:834-854. [15] Electric and hybrid electric vehicle rechargeable energy storage system (RESS) safety and abuse testing [M]. SAE International, 2009. [16] ASHTIANI C. Analysis of battery safety and hazards’ risk mitigation [J]. ECS Transactions, 2008, 11(19):1. [17] CABRERA-CASTILLO E, NIEDERMEIER F, JOSSEN A. Calculation of the state of safety (SOS) for lithium ion batteries [J]. Journal of Power Sources, 2016, 324:509-520. [18] GERVER R E, MEYERS J P. Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations [J]. Journal of The Electrochemical Society, 2011, 158(7):A835-A843. [19] RICHARDSON R R, HOWEY D A. Sensorless battery internal temperature estimation using a Kalman filter with impedance measurement [J]. IEEE Transactions on Sustainable Energy, 2015, 6(4):1190-1199. [20] RICHARDSON R R, IRELAND P T, HOWEY D A. Battery internal temperature estimation by combined impedance and surface temperature measurement [J]. Journal of Power Sources, 2014, 265:254-261. [21] KIM Y, SIEGEL J B, STEFANOPOULOU A G. A computationally efficient thermal model of cylindrical battery cells for the estimation of radially distributed temperatures[C]. Proceedings of the 2013 American Control Conference, 2013. [22] LIN X, PEREZ H E, SIEGEL J B, et al. Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring [J]. IEEE Transactions on Control Systems Technology, 2013, 21(5):1745-1755. [23] DEY S, BIRON Z A, TATIPAMULA S, et al. Model-based real-time thermal fault diagnosis of Lithium-ion batteries [J]. Control Engineering Practice, 2016, 56:37-48. [24] SUN J, WEI G, PEI L, et al. Online internal temperature estimation for lithium-ion batteries based on Kalman filter [J]. Energies, 2015, 8(5):4400-4415. [25] DAI H, ZHU L, ZHU J, et al. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries [J]. Journal of Power Sources, 2015, 293:351-365. [26] ZHANG C, LI K, DENG J. Real-time estimation of battery internal temperature based on a simplified thermoelectric model [J]. Journal of Power Sources, 2016, 302:146-154. [27] DEBERT M, COLIN G, BLOCH G, et al. An observer looks at the cell temperature in automotive battery packs [J]. Control Engineering Practice, 2013, 21(8):1035-1042. [28] LEI Z, ZHANG C, LI J, et al. Preheating method of lithium-ion batteries in an electric vehicle [J]. Journal of Modern Power Systems and Clean Energy, 2015, 3(2):289-296. [29] WANG T, TSENG K, ZHAO J, et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies [J]. Applied Energy, 2014, 134:229-238. [30] LING Z, ZHANG Z, SHI G, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules [J]. Renewable and Sustainable Energy Reviews, 2014, 31:427-438. [31] HUANG P, VERMA A, ROBLES D J, et al. Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition [J]. Applied Thermal Engineering, 2018, 132:521-530. [32] SCHWEITZER B, WILKE S, KHATEEB S, et al. Experimen-tal validation of a 0-D numerical model for phase change thermal management systems in lithium-ion batteries [J]. Journal of Power Sources, 2015, 287:211-219. [33] ZHAO R, GU J, LIU J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries [J]. Journal of Power Sources, 2015, 273:1089-1097. [34] KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters:experimental validation [J]. Journal of Power Sources, 2005, 142(1-2):345-353. [35] AZIZI Y, SADRAMELI S. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates [J]. Energy Conversion and Management, 2016, 128:294-302. [36] LI W, QU Z, HE Y, et al. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials [J]. Journal of Power Sources, 2014, 255:9-15. [37] QU Z, LI W, TAO W. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material [J]. International Journal of Hydrogen Energy, 2014, 39(8):3904-3913. [38] SAMIMI F, BABAPOOR A, AZIZI M, et al. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers [J]. Energy, 2016, 96:355-371. [39] GOLI P, LEGEDZA S, DHAR A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries [J]. Journal of Power Sources, 2014, 248:37-43. [40] ZHAO R, GU J, LIU J. Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design [J]. Energy, 2017, 135:811-822. [41] JIANG Z, QU Z. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle:a comprehensive numerical study [J]. Applied Energy, 2019, 242:378-392. [42] LI Y, QI F, GUO H, et al. Numerical investigation of thermal runaway propagation in a Li-ion battery module using the heat pipe cooling system [J]. Numerical Heat Transfer, Part A:Applications, 2019, 75(3):183-199. [43] FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles:a review [J]. Energy Storage Materials, 2018, 10:246-267. [44] 陈天雨, 冯旭宁, 欧阳明高,等. 基于模型的动力电池系统多尺度热安全设计 [J]. 中国机械工程, 2018, 29(15):1840-1846, 74. CHEN T, FENG X, OUYANG M, et al. Model-based multi-scale thermal safety design of traction battery systems [J]. China Mechanical Engineering, 2018, 29(15):1840-1846, 74. [45] RUIZ V, PFRANG A, KRISTON A, et al. A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles [J]. Renewable and Sustainable Energy Reviews, 2018, 81:1427-1452. [46] SPIELBAUER M, BERG P, RINGAT M, et al. Experimental study of the impedance behavior of 18650 lithium-ion battery cells under deforming mechanical abuse [J]. Journal of Energy Storage, 2019, 26:101039. [47] ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries:a review [J]. Journal of Power Sources, 2016, 306:178-192. [48] OCA L, GUILLET N, TESSARD R, et al. Lithium-ion capacitor safety assessment under electrical abuse tests based on ultrasound characterization and cell opening [J]. Journal of Energy Storage, 2019, 23:29-36. [49] PEREA A, PAOLELLA A, DUBé J, et al. State of charge influence on thermal reactions and abuse tests in commercial lithium-ion cells [J]. Journal of Power Sources, 2018, 399:392-397. [50] ZHENG Y, HAN X, LU L, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles [J]. Journal of Power Sources, 2013, 223:136-146. [51] YAO L, WANG Z, MA J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles [J]. Journal of Power Sources, 2015, 293:548-561. [52] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理, 建模与防控 [D]. 北京:清华大学, 2016. FENG X. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle:test, modeling and prevention [D]. Beijing: Tsinghua University, 2016. [53] WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material:an experimental study [J]. Journal of Power Sources, 2017, 340:51-59. [54] 朱晓庆, 王震坡, 王聪, 等. 三元锂离子动力电池过充行为特性实验研究 [J]. 汽车工程, 2019, 41(5):582-589. ZHU X, WANG Z, WANG C, et al. An experimental study on overcharge behaviors of lithium-ion power battery with LiNi0.6Co0.2Mn0.2O2 cathode [J]. Automotive Engineering, 2019, 41(5):582-589. [55] YUAN C, WANG Q, WANG Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module [J]. Applied Thermal Engineering, 2019, 153:39-50. [56] PINNANGUDI B, DALAL S, MEDORA N K, et al. Thermal shutdown characteristics of insulating materials used in lithium ion batteries[C]. 2010 IEEE Symposium on Product Compliance Engineering Proceedings, 2010. [57] MENDOZA-HERNANDEZ O S, ISHIKAWA H, NISHIKAWA Y, et al. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge [J]. Journal of Power Sources, 2015, 280:499-504. [58] ARAI H, TSUDA M, SAITO K, et al. Thermal reactions between delithiated lithium nickelate and electrolyte solutions [J]. Journal of The Electrochemical Society, 2002, 149(4):A401-A406. [59] 刘恒伟, 李建军, 谢潇怡,等. 大尺寸三元锂离子动力电池过充电安全性研究 [J]. 新材料产业, 2015(3). LIU H, LI J, XIE X, et al. Large scale ternary lithium-ion battery overcharge safety research [J]. Advanced Materials Industry, 2015(3). [60] FENG X, FANG M, HE X, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J]. Journal of Power Sources, 2014, 255:294-301. [61] ZHOU X, XU Y, RAN J, et al. Polymorphic microsatellites in Buff-throated partridge developed by cross-species amplification [J]. European Journal of Wildlife Research, 2009, 55(1):81-83. [62] LUO J, DU J, GAO S, et al. Lentviral-mediated RNAi to inhibit target gene expression of the porcine integrin αv subunit, the FMDV receptor, and against FMDV infection in PK-15 cells [J]. Virology Journal, 2011, 8(1):428. [63] HAMMAMI A, RAYMOND N, ARMAND M. Runaway risk of forming toxic compounds [J]. Nature, 2003, 424(6949):635-636. [64] ESHETU G G, BERTRAND J P, LECOCQ A, et al. Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts [J]. Journal of Power Sources, 2014, 269:804-811. [65] HUANG P, WANG Q, LI K, et al. The combustion behavior of large scale lithium titanate battery [J]. Scientific Reports, 2015, 5:7788. [66] MACNEIL D D, LARCHER D, DAHN J R. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature [J]. Journal of the Electrochemical Society, 1999, 146(10):3596-3602. [67] YAMAKI J I, TAKATSUJI H, KAWAMURA T, et al. Thermal stability of graphite anode with electrolyte in lithium-ion cells [J]. Solid State Ionics, 2002, 148(3):241-245. [68] SAME A, BATTAGLIA V, TANG H Y, et al. In situ neutron radiography analysis of graphite/NCA lithium-ion battery during overcharge [J]. Journal of Applied Electrochemistry, 2012, 42(1):1-9. [69] CHEN Z, QIN Y, REN Y, et al. Multi-scale study of thermal stability of lithiated graphite [J]. Energy & Environmental Science, 2011, 4(10):4023-4030. [70] WANG Q, MAO B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies [J]. Progress in Energy and Combustion Science, 2019, 73:95-131. [71] JHU C Y, WANG Y W, SHU C M, et al. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter [J]. Journal of Hazardous Materials, 2011, 192(1):99-107. [72] FU Y, LU S, LI K, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter [J]. Journal of Power Sources, 2015, 273:216-222. [73] FENG X, SUN J, OUYANG M, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J]. Journal of Power Sources, 2015, 275:261-273. [74] LAMB J, ORENDORFF C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries [J]. Journal of Power Sources, 2015, 283:517-523. [75] GAO S, FENG X, LU L, et al. An experimental and analytical study of thermal runaway propagation in a large format lithium ion battery module with NCM pouch-cells in parallel [J]. International Journal of Heat and Mass Transfer, 2019, 135:93-103. [76] 胡棋威. 锂离子电池热失控传播特性及阻断技术研究 [D]. 北京:中国舰船研究院, 2015. HU Q. Study on lithium-ion batteries thermal runaway propagation characteristics and blocking techniques [D]. Beijing:China Ship Research and Development Academy, 2015. [77] HUANG P, PING P, LI K, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode [J]. Applied Energy, 2016, 183:659-673. [78] LI H, DUAN Q, ZHAO C, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode [J]. Journal of Hazardous Materials, 2019, 375:241-254. [79] JO M, NOH M, OH P, et al. A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries [J]. Advanced Energy Materials, 2014, 4(13):1301583. [80] LU Z, SU W. Hairpin vortices in the wake of grid fin [J]. Chinese Journal of Aeronautics, 2001, 14(4):200-204. [81] 张林, 张静, 陈剑峰, 等. 锂离子电池正极材料共混改性研究进展 [J]. 储能科学与技术, 2019, 8(5):838. ZHANG L, ZHANG J, CHEN J, et al. Research progress in blending modification cathode materials for lithium ion batteries [J]. Energy Storage Science and Technology, 2019, 8(5):838. [82] WANG L, LI L, ZHANG X, et al. Compound-hierarchical-sphere LiNi0.5Co0.2Mn0.3O2:synthesis, structure, and electrochemical characterization [J]. ACS Applied Materials & Interfaces, 2018, 10(38):32120-32127. [83] CHEN R, QU W, QIAN J, et al. Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range [J]. Journal of Materials Chemistry A, 2017, 5(47):24677-24685. [84] ZHONG H, KONG C, ZHAN H, et al. Safe positive temperature coefficient composite cathode for lithium ion battery [J]. Journal of Power Sources, 2012, 216:273-280. [85] CHEN Z, HSU P C, LOPEZ J, et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries [J]. Nature Energy, 2016, 1(1):15009. [86] 李惠, 吉维肖, 曹余良, 等. 锂离子电池热失控防范技术 [J]. 储能科学与技术, 2018, 7(3):376-383. LI H, JI W, CAO Y, et al. Thermal runaway-preventing technologies for lithium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(3):376-383. [87] BAGINSKA M, BLAISZIK B J, RAJH T, et al. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres [J]. Journal of Power Sources, 2014, 269:735-739. [88] JIANG X, XIAO L, AI X, et al. A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core-shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(44):23238-23242. [89] LIU H M, SAIKIA D, WU H C, et al. Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries [J]. RSC Advances, 2014, 4(99):56147-56155. [90] SHUI L, CHEN F, GARG A, et al. Design optimization of battery pack enclosure for electric vehicle [J]. Structural and Multidisciplinary Optimization, 2018, 58(1):331-347. [91] WANG X, LI M, LIU Y, et al. Surrogate based multidisciplinary design optimization of lithium-ion battery thermal management system in electric vehicles [J]. Structural and Multidisciplinary Optimization, 2017, 56(6):1555-1570. [92] 陈才星, 牛慧昌, 李钊, 等. 环氧树脂板对锂离子电池热失控扩展的阻隔作用 [J]. 储能科学与技术, 2019, 8(3):532-537. CHEN C, NIU H, LI Z, et al. Thermal runaway propagation mitigation of lithium ion battery by epoxy resin board [J]. Energy Storage Science and Technology, 2019, 8(3):532-537. [93] CHEN D, JIANG J, KIM G H, et al. Comparison of different cooling methods for lithium ion battery cells [J]. Applied Thermal Engineering, 2016, 94:846-854. [94] 陈俊宇, 于兰英, 王国志. 动力电池组风冷散热系统优化分析 [J]. 电源技术, 2019, 43(1):84-87. CHEN J, YU L, WANG G. Analysis of optimization of wind cooling system in power battery [J]. Chinese Journal of Power Sources, 2019, 43(1):84-87. [95] SAW L H, YE Y, TAY A A O, et al. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling [J]. Applied Energy, 2016, 177:783-792. [96] XIE J, GE Z, ZANG M, et al. Structural optimization of lithium-ion battery pack with forced air cooling system [J]. Applied Thermal Engineering, 2017, 126:583-593. [97] LU Z, YU X, WEI L, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement [J]. Applied Thermal Engineering, 2018, 136:28-40. [98] LI W, XIAO M, PENG X, et al. A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs [J]. Applied Thermal Engineering, 2019, 147:90-100. [99] 崔星, 李达, 刘增辉, 等. 圆柱型锂离子电池组热均衡性研究 [J]. 汽车工程, 2019, 41(11):1273-1280. CUI X, LI D, LIU Z, et al. A study on thermal equilibrium of cylindrical lithium-ion battery pack [J], Automotive Engineering, 2019, 41(11):1273-1280. [100] YANG X H, TAN S C, LIU J. Thermal management of Li-ion battery with liquid metal [J]. Energy Conversion and Management, 2016, 117:577-585. [101] E J, HAN D, QIU A, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system [J]. Applied Thermal Engineering, 2018, 132:508-520. [102] MALIK M, DINCER I, ROSEN M A, et al. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling [J]. Applied Thermal Engineer-ing, 2018, 129:472-481. [103] LV Y, ZHOU D, YANG X, et al. Experimental investigation on a novel liquid-cooling strategy by coupling with graphene-modified silica gel for the thermal management of cylindrical battery [J]. Applied Thermal Engineering, 2019, 159:113885. [104] AN Z, SHAH K, MA Y, et al. A comprehensive parametric study of minichannel based liquid cooling of Li-Ion battery pack [C]. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, 2018, V08BT10 A042. [105] 李扬, 陶于兵. 多孔复合相变材料电池热管理模型及结构优化 [J]. 科学通报, 2020, 65(Z1):213-221. LI Y, TAO Y B. Battery thermal management model and structure optimization of porous composite phase change material [J]. Chin. Sci. Bull, 2020,65:213-221. [106] AL-ZAREER M, DINCER I, ROSEN M A. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J]. Journal of Power Sources, 2017, 363:291-303. [107] WANG X, XIE Y, DAY R, et al. Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack [J]. Energy, 2018, 156:154-168. [108] RAO Z, WANG Q, HUANG C. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system [J]. Applied Energy, 2016, 164:659-669. [109] LI Q, YANG C, SANTHANAGOPALAN S, et al. Numerical investigation of thermal runaway mitigation through a passive thermal management system [J]. Journal of Power Sources, 2019, 429:80-88. [110] FENG X, HE X, OUYANG M, et al. Thermal runaway propagation model for designing a safer battery pack with 25Ah Li-NixCoyMnzO2 large format lithium ion battery [J]. Applied Energy, 2015, 154:74-91. [111] COLEMAN B, OSTANEK J, HEINZEL J. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions [J]. Applied Energy, 2016, 180:14-26. [112] XU J, LAN C, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling [J]. Applied Thermal Engineering, 2017, 110:883-890. [113] ZHANG S, ZHAO R, LIU J, et al. Investigation on a hydrogel based passive thermal management system for lithium ion batteries [J]. Energy, 2014, 68:854-861. [114] 廖正海, 张国强. 锂离子电池热失控早期预警研究进展 [J]. 电工电能新技术, 2019, 38(10):61-66. LIAO Z, ZHANG G. Progress on early warning technology for thermal runaway of lithium-ion battery [J], Advanced Technology of Electrical Engineering and Energy, 2019, 38(10):61-66. [115] RAGHAVAN A, KIESEL P, SOMMER L W, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 1:cell embedding method and performance [J]. Journal of Power Sources, 2017, 341:466-473. [116] GANGULI A, SAHA B, RAGHAVAN A, et al. Embedded fiber-optic sensing for accurate internal monitoring of cell state in advanced battery management systems part 2:internal cell signals and utility for state estimation [J]. Journal of Power Sources, 2017, 341:474-482. [117] SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention [J]. Journal of Power Sources, 2018, 405:30-36. [118] FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery [J]. Journal of Power Sources, 2018, 389:106-119. [119] 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展 [J]. 储能科学与技术, 2018, 7(6):957-966. REN D, FENG X, HAN X, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process [J]. Energy Storage Science and Technology, 2018, 7(6):957-966. [120] LI X, DAI K, WANG Z, et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method [J]. Journal of Energy Storage, 2020, 27:101121. [121] HONG J, WANG Z, CHEN W, et al. Multi-fault synergistic diagnosis of battery systems based on the modified multi-scale entropy [J]. International Journal of Energy Research, 2019, 43(14):8350-8369. [122] ZHAO Y, LIU P, WANG Z, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods [J]. Applied Energy, 2017, 207:354-362. |
[1] | 胡林,谷子逸,王丹琦,王方,邹铁方,黄晶. 汽车安全性测评规程现状及趋势展望[J]. 汽车工程, 2024, 46(2): 187-200. |
[2] | 李致远, 鲁锐华, 余庆华, 颜伏伍. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. |
[3] | 刘启全,马建,赵轩,张凯,孟德安,相里康. 基于值率模型的电动汽车动力电池电压异常检测[J]. 汽车工程, 2023, 45(9): 1728-1739. |
[4] | 李达,邓钧君,张照生,刘鹏,王震坡. 电动车辆动力电池安全预警策略研究综述[J]. 汽车工程, 2023, 45(8): 1392-1407. |
[5] | 廉玉波,吴恺,曾董,李松,王溥希. 基于整车平台的动力电池平台化研究[J]. 汽车工程, 2023, 45(5): 807-813. |
[6] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[7] | 陈吉清,李子涵,兰凤崇,蒋心平,潘威,陈继开. 基于非线性降维IC特征的实车电池SOH估计[J]. 汽车工程, 2023, 45(2): 199-208. |
[8] | 兰凤崇,潘威,陈吉清. 基于Aseq2seq-PF的实车锂离子动力电池剩余使用寿命预测[J]. 汽车工程, 2023, 45(12): 2348-2356. |
[9] | 洪吉超,梁峰伟,杨海旭,李克瑞. 大数据驱动动力电池智能安全管理与控制方法研究[J]. 汽车工程, 2023, 45(10): 1845-1861. |
[10] | 廉玉波,凌和平,王钧斌,潘华,谢朝. 基于混合高斯-隐马尔可夫模型的动力电池实时热失控检测[J]. 汽车工程, 2023, 45(1): 139-146. |
[11] | 陈吉清,冼浩岚,兰凤崇. 均布模组式动力电池包热失控典型模式分析[J]. 汽车工程, 2022, 44(8): 1199-1211. |
[12] | 魏一凡,韩雪冰,卢兰光,王贺武,李建秋,欧阳明高. 面向碳中和的新能源汽车与车网互动技术展望[J]. 汽车工程, 2022, 44(4): 449-464. |
[13] | 曾祥兵,谢堃,张伟,徐俊超,张培根,孙正明. 新型动力电池热管理系统设计及性能研究[J]. 汽车工程, 2022, 44(4): 476-481. |
[14] | 赵杨,徐小飞,吴海龙,葛宇龙. 新能源汽车高压线束在机械外载下失效试验及仿真研究[J]. 汽车工程, 2022, 44(4): 591-600. |
[15] | 王亚楠,韩雪冰,卢兰光,冯旭宁,李建秋,欧阳明高. 电动汽车动力电池研究展望:智能电池、智能管理与智慧能源[J]. 汽车工程, 2022, 44(4): 617-637. |
|