汽车工程 ›› 2023, Vol. 45 ›› Issue (10): 1845-1861.doi: 10.19562/j.chinasae.qcgc.2023.10.007
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
收稿日期:
2023-03-24
修回日期:
2023-05-08
出版日期:
2023-10-25
发布日期:
2023-10-23
通讯作者:
洪吉超
E-mail:hongjichao@ustb.edu.cn
基金资助:
Jichao Hong1,2(),Fengwei Liang1,2,Haixu Yang1,2,Kerui Li1,2
Received:
2023-03-24
Revised:
2023-05-08
Online:
2023-10-25
Published:
2023-10-23
Contact:
Jichao Hong
E-mail:hongjichao@ustb.edu.cn
摘要:
针对新能源汽车动力电池安全风险管理与控制研究,本文详细讨论了动力电池故障机理及类型,基于大数据统计分析阐明了动力电池一致性与安全性的耦合关系,总结了数据驱动的动力电池安全状态预测与故障诊断预警方法,最后提出一种基于“车-云”融合的实车动力电池系统安全控制策略。本文旨在为实现实车动力电池安全状态实时监控与风险预警提供理论指导。
洪吉超,梁峰伟,杨海旭,李克瑞. 大数据驱动动力电池智能安全管理与控制方法研究[J]. 汽车工程, 2023, 45(10): 1845-1861.
Jichao Hong,Fengwei Liang,Haixu Yang,Kerui Li. Research on Intelligent Safety Management and Control Methods for Big-data-driven Battery Systems[J]. Automotive Engineering, 2023, 45(10): 1845-1861.
表1
电池系统的故障类型和相互关系"
故障诱因 | 故障类型 | 故障危害 |
---|---|---|
机械变形,过充/放电故障,活性材料诱因,热故障 | 内短路故障 | 内短路故障发生时通常伴随着放电和放热,是诱发热失控的主要故障 |
连接故障,机械变形,老化故障,水浸泡 | 外短路故障 | 电池温度将迅速上升,最终导致热失控 |
传感器故障,不一致性故障,充电器故障,充/放电结束时大速率充/放电 | 过充/放电故障 | 轻则降低电池寿命,重则出现材料相变、电解质分解等现象 |
连接部位因振动、碰撞、环境侵蚀而松动,出现老化故障 | 连接故障 | 导致电池内阻急剧增加,表现出电池不平衡和温度过热 |
老化故障,绝缘层受振动和碰撞磨损,环境侵蚀 | 绝缘故障 | 不仅损坏电池系统,而且高压导电电路也会威胁到乘客的生命 |
环境侵蚀,老化故障,传感器缺陷 | 传感器故障 | 导致电池管理系统误判当前电池状态,混淆系统功能 |
温度传感器故障,系统部件损坏 | 冷却系统故障 | 整个电池系统的温度将迅速上升 |
表2
基于数据驱动的故障诊断方法分类与特点"
诊断方法 | 优点 | 缺点 | |
---|---|---|---|
机器学习 | 人工神经网络[ | 对模型的不确定性不敏感,精确度高,能高度捕捉非线性,对温度和其他不确定因素有适应性,易于在硬件中实现 | 建模复杂,特别是对于具有大量隐藏层和许多输入特征的模型,不考虑电池和工作条件的泛化是困难的,需要大量的内存来储存数据和算法 |
随机森林分类器[ | 分类能力强,计算成本低 | 对电池故障数据的质量和数量要求很高 | |
支持向量机[ | 准确度高,建模复杂度较低,能够高度捕捉锂电池的非线性,需要的训练数据较少,诊断速度快 | 数据预处理费时且复杂,核函数选择和参数微调具有挑战性,模型的适应性和可靠性是一个问题 | |
高斯过程回归[ | 准确性好,非参数性灵活,提供协方差来产生不确定性水平 | 诊断效果对内核函数的选择高度敏感,需要专业知识,计算复杂度高 | |
逻辑回归[ | 准确性好,易于实施 | 适应大量的特征向量是一种挑战 | |
信号处理 | 频谱分析[ | 可以不用求取输出的时域表达式,使用方便;可以研究系统的稳定性和瞬态性能,便于分析系统特性;对线性和非线性状态都适用 | 只适用于分析和处理平稳信号,无法处理非平稳信号;结果不够直观,不易理解;无法体现发生的时刻,较难准确定位故障的发生 |
小波变换[ | 窗口大小随频率变化,在时域和频域中均具有局部分析功能,适合任何信号(平稳或非平稳)的分析 | 处理二维图像时有很大的局限性;对于高维函数不能最优表示 | |
信息融合 | 样本熵[ | 增加系统的生存能力;降低信息模糊度;扩展空间和时间覆盖范围;对故障信息描述更全面可靠 | 数据通信量较大;抗干扰能力差;寻找到合适的信息融合算法较为困难 |
1 | MA M, DUAN Q, LI X, et al. Fault diagnosis of external soft-short circuit for series connected lithium-ion battery pack based on modified dual extended Kalman filter[J]. Journal of Energy Storage, 2021, 41: 102902. |
2 | LIN T, CHEN Z, ZHOU S. Voltage-correlation based multi-fault diagnosis of lithium-ion battery packs considering inconsistency[J]. Journal of Cleaner Production, 2022, 336: 130358. |
3 | 王震坡, 袁昌贵, 李晓宇,等. 新能源汽车动力电池安全管理技术挑战与发展趋势分析[J]. 汽车工程, 2020, 42: 1606-1620. |
WANG Z P, YUAN C G,LI X Y, et al. An analysis on challenge and development trend of safety management technologies for traction battey in new energy vehicles[J]. Automotive Engineering, 2020, 42: 1606-1620. | |
4 | SUN Z, HAN Y, WANG Z, et al. Detection of voltage fault in the battery system of electric vehicles using statistical analysis[J]. Applied Energy, 2022, 307: 118172. |
5 | 彭运赛,夏飞,袁博,等. 基于改进CNN和信息融合的动力电池组故障诊断方法[J]. 汽车工程, 2020, 42: 1529-1536. |
PENG Y C, XIA F, YUAN B, et al. Fault diagnosis of traction battery pack based on improved convolution neural network and information fusion[J]. Automotive Engineering, 2020, 42: 1529-1536. | |
6 | TRAN M K, FOWLER M. A review of lithium-ion battery fault diagnostic algorithms: current progress and future challenges[J]. Algorithms, 2020, 13: 62. |
7 | FENG X, OUYANG M. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of The Electrochemical Society, 2018, 165: A155. |
8 | YAO L, WANG Z, MA J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources, 2015, 293: 548-561. |
9 | HU X, ZHANG K, LIU K, et al. Advanced fault diagnosis for lithium-ion battery systems: a review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14: 65-91. |
10 | 王震坡, 李晓宇, 袁昌贵,等. 大数据下电动汽车动力电池故障诊断技术挑战与发展趋势[J]. 机械工程学报, 2021, 57: 52-63. |
WANG Z P, LI X Y, YUAN C G, et al. Challenge and prospects for fault diagnosis of power battery system for electrical vehicles based on big-data[J]. Journal of Mechanical Engineering, 2021, 57: 52-63. | |
11 | XIONG R, SUN W, YU Q, et al. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855. |
12 | LIU L, FENG X, ZHANG M, et al. Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries[J]. Applied Energy, 2020, 259: 114143. |
13 | ZHU X, WANG Z, WANG C, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6 Co0.2 Mn0.2)O2 cathode for electric vehicles: degradation and failure mechanisms[J]. Journal of The Electrochemical Society, 2018, 165: 3613-3629. |
14 | JOCHER P, STEINHARDT M, LUDWIG S, et al. A novel measurement technique for parallel-connected lithium-ion cells with controllable interconnection resistance[J]. Journal of Power Sources, 2021, 503: 230030. |
15 | LEE D C, KIM C W. Two-way nonlinear mechanical-electrochemical-thermal coupled analysis method to predict thermal runaway of lithium-ion battery cells caused by quasi-static indentation[J]. Journal of Power Sources, 2020, 475: 228678. |
16 | YUE P A, XF B, MZ A, et al. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections[J]. Journal of Cleaner Production, 2020, 255: 120277. |
17 | LIU B, JIA Y, YUAN C, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112. |
18 | FENG X, REN D, HE X, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
19 | LIAO Z, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: 226879. |
20 | REN D, FENG X, LIU L, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
21 | YANG R, XIONG R, HE H, et al. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application[J]. Journal of Cleaner Production, 2018, 187: 950-959. |
22 | ZHU X, WANG Z, WANG Y, et al. Overcharge investigation of large format lithium-ion pouch cells with Li (Ni0.6Co0.2Mn0.2) O2 cathode for electric vehicles: thermal runaway features and safety management method[J]. Energy, 2019, 169: 868-880. |
23 | LAI X, ZHENG Y, ZHOU L, et al. Electrical behavior of over-discharge-induced internal short circuit in lithium-ion cells[J]. Electrochimica Acta, 2018, 278: 245-254. |
24 | 孙振宇, 王震坡, 刘鹏,等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57: 87-104. |
SUN Z Y, WANG Z P, LIU P, et al. Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of Mechanical Engineering, 2021, 57: 87-104. | |
25 | XIONG R, YU Q, SHEN W, et al. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34. |
26 | ZHU H, DU Y, WEN M, et al. Positioning analysis and improvement of communication failure in electric vehicle battery management system[J]. Journal of Jiangsu University(Natural Science Edition), 2019. |
27 | VU V B, PHAN V T, DAHIDAH M, et al. Multiple output inductive charger for electric vehicles[J]. IEEE Transactions on Power Electronics, 2018, 34: 7350-7368. |
28 | SHANG Z, QI H, LIU X. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer, 2019, 130: 33-41. |
29 | VAIDEESWARAN V, BHUVANESH S, DEVASENA M. Battery Management systems for electric vehicles using lithium ion batteries[C]. 2019 Innovations in Power and Advanced Computing Technologies, 2019: 1-9. |
30 | KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212. |
31 | MIN H, ZHANG Z, SUN W, et al. A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime[J]. Applied Thermal Engineering, 2020, 181: 115944. |
32 | 佘承其, 张照生, 刘鹏,等. 大数据分析技术在新能源汽车行业的应用综述—基于新能源汽车运行大数据[J]. 机械工程学报, 2019, 55: 3-16. |
SHE C Q, ZHANG Z S, LIU P, et al. Overview of the application of big data analysis technology in new energy vehicle industry: based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering, 2019, 55: 3-16. | |
33 | DUAN B, LI Z, GU P, et al. Evaluation of battery inconsistency based on information entropy[J]. Journal of Energy Storage, 2018, 16: 160-166. |
34 | FENG F, HU X, HU L, et al. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 102-113. |
35 | HAN X, LU L, FENG X, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. ETransportation, 2019, 1: 100005. |
36 | LIU K. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. |
37 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
REN D S, FENG X L, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. | |
38 | 胡杰, 高志文. 基于数据驱动的电动汽车动力电池SOC预测[J]. 汽车工程, 2021, 43:1-9. |
HU J, GAO Z W. A data-driven SOC prediction scheme for traction battery in electric vehicles[J]. Automotive Engineering, 2021, 43:1-9. | |
39 | WANG S, TAKYI-ANINAKWA P, JIN S, et al. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation[J]. Energy, 2022, 254: 124224. |
40 | LIU Y, SHU X, YU H, et al. State of charge prediction framework for lithium-ion network and transfer learning[J]. The Journal of Energy Storage, 2021, 37: 102494. |
41 | LI R, WANG H, DAI H, et al. Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network[J]. Energy, 2022, 250: 123853. |
42 | 王萍, 彭香园, 程泽. 基于DTV-IGPR模型的锂离子电池SOH估计方法[J]. 汽车工程, 2021, 43:1710-1719. |
WANG P, PENG X Y, CHENG Z. SOH estimation method for lithium-ion batteries based on DTV-IGPR model[J]. Automotive Engineering, 2021, 43:1710-1719. | |
43 | HONG J, WANG Z, CHEN W, et al. Online accurate state of health estimation for battery systems on real-world electric vehicles with variable driving conditions considered[J]. Journal of Cleaner Production, 2021, 294:125814. |
44 | LEI C, MENG J, STROE D, et al. Multi-objective optimization of data-driven model for lithium-ion battery SOH estimation with short-term feature[J]. IEEE Transactions on Power Electronics, 2020, 35:11855-11864. |
45 | YUAN Y, WANG H, LU L, et al. In situ detection method for Li-ion battery of separator pore closure defects based on abnormal voltage in rest condition[J]. Journal of Power Sources, 2022, 542: 231785. |
46 | SUN Z, HAN Y, WANG Z, et al. Detection of voltage fault in the battery system of electric vehicles using statistical analysis[J]. Applied Energy, 2022, 307: 118172. |
47 | LI D, ZHANG Z, LIU P, et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transactions on Power Electronics, 2021,36 :1303-1315. |
48 | HONG J, WANG Z, YAO Y. Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy, 2019, 251: 113381. |
49 | CWH A, XIONG R, NYC C, et al. Deep neural network battery life and voltage prediction by using data of one cycle only[J]. Applied Energy, 2022, 306: 118134. |
50 | 王攀, 姜钊, 陈岱岱,等. 车载12 V锂电池的工作电压预测和预警策略研究[J]. 电源技术, 2022, 46: 881-884. |
WANG P, JIANG Z, CHEN D D, et al. Research on operating voltage prediction and warning strategy for vehicle 12 V lithium battery[J]. Chinese Journal of Power Sources, 2022, 46: 881-884. | |
51 | TRAN M, PANCHAL S, CHAUHAN V, et al. Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high‐capacity lithium‐ion battery[J]. International Journal of Energy Research, 2022, 46:786-794. |
52 | LIN P, HONG J, WANG Z. Battery voltage and state of power prediction based on an improved novel polarization voltage model[J]. Energy Reports, 2022, 6: 2299-2308. |
53 | LI D, ZHANG Z, LIU P, et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transactions on Power Electronics, 2021, 36: 1303-1315. |
54 | ZHANG W, WAN W, WU W, et al. Internal temperature prediction model of the cylindrical lithium-ion battery under different cooling modes[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2022, 212: 1359-4311. |
55 | YANG R, XIONG R, SHEN W, et al. Extreme learning machine-based thermal model for lithium-ion batteries of electric vehicles under external short circuit[J]. Engineering, 2021,3: 395-405. |
56 | FJA B, RM C, SKBD E. Prediction of lithium-ion battery temperature in different operating conditions equipped with passive battery thermal management system by artificial neural networks[J]. Materials Today Proceedings, 2022, 48: 1796-1804. |
57 | KLEINER J, STUCKENBERGER M, KOMSIYSKA L, et al. Real-time core temperature prediction of prismatic automotive lithium-ion battery cells based on artificial neural networks[J]. The Journal of Energy Storage, 2021, 39:102588. |
58 | JIANG L, YAN C, ZHANG X, et al. Temperature prediction of battery energy storage plant based on EGA-BiLSTM[J]. Energy Reports, 2022, 5: 1009-1018. |
59 | 潘凤文, 麻斌, 高莹, 等. 奇偶空间法用于电动车锂离子电池传感器故障诊断[J]. 汽车工程, 2019, 41: 831-838. |
PAN F W, MA B, GAO Y, et al. Parity space approach for fault diagnosis of lithium-ion battery sensor for electric vehicles[J]. Automotive Engineering, 2019, 41: 831-838. | |
60 | YU Q, DAI L, XIONG R, et al. Current sensor fault diagnosis method based on an improved equivalent circuit battery model[J]. Applied Energy, 2022, 310:118588. |
61 | WEI J, DONG G, CHEN Z. Model-based fault diagnosis of lithium-ion battery using strong tracking extended kalman filter[J]. Energy Procedia, 2018, 158:2500-2505. |
62 | JIANG H, LI J, CHAI Z, et al. A comparative study on model-based diagnosis methods of overcharge-induced damage for Li-ion battery[C]. 2020 Chinese Control and Decision Conference (CCDC). 2020, 11: 5350-5355. |
63 | AG A, LIU Y A, LIANG G A. Development of recycling strategy for large stacked systems: experimental and machine learning approach to form reuse battery packs for secondary applications[J]. Journal of Cleaner Production, 2020, 275, 124152. |
64 | WANG J, ZHANG S, HU X. A fault diagnosis method for lithium-ion battery packs using improved RBF neural network[J]. Frontiers in Energy Research, 2021, 9:702139. |
65 | BAGHAEE H R, MLAKI D, NIKOLIVSKI S, et al. Support vector machine-based islanding and grid fault detection in active distribution networks[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8:2385-2403. |
66 | YAO L, FANG Z, XIAO Y, et al, An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine[J]. Energy, 2021, 214: 118866. |
67 | 申东旭, 吕超, 葛亚明,等. 基于机械振动信号的锂离子电池组连接故障诊断[J]. 机械工程学报, 2022, 58 :56-68. |
SHEN D X, LU C, GE Y M, et al. Connection fault diagnosis of lithium-ion battery pack based on mechanical vibration signals[J]. Journal of Mechanical Engineering, 2022, 58: 56-68. | |
68 | 刘鹏, 吴志强, 张照生, 等. 基于电压频域特征和异常系数的动力电池故障诊断方法[J]. 中国公路学报, 2022, 35: 89-104. |
LIU P, WU Z Q, ZHANG Z S, et al. Fault diagnosis for battery systems based on voltage frequency-domain indicator and abnormal coefficient[J]. China Journal of Highway and Transport, 2022, 35: 89-104. | |
69 | YAO L, XIAO Y, GONG X, et al. A novel intelligent method for fault diagnosis of electric vehicle battery system based on wavelet neural network[J]. Journal of Power Sources, 2020, 453: 227870. |
70 | HONG J, WANG Z, QU C, et al. Fault prognosis and isolation of lithium-ion batteries in electric vehicles considering real-scenario thermal runaway risks[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 28: 1-1. |
71 | LI J, SHANG Y, GU X, et al. An early battery fault diagnosis method based on multi-source information fusion theory[C]. 2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI). 2021, 4: 29-31. |
72 | 彭运赛,夏飞,袁博,等. 基于改进CNN和信息融合的动力电池组故障诊断方法[J]. 汽车工程, 2020, 42: 1529-1536. |
PENG Y S, XIA F, YUAN B, et al. Fault diagnosis of traction battery pack based on improved convolution neural network and information fusion[J]. Automotive Engineering, 2020, 42: 1529-1536. | |
73 | SHANG Y, LU G, KANG Y, et al. A multi-fault diagnosis method based on modified Sample Entropy for lithium-ion battery strings[J]. Journal of Power Sources, 2020, 446: 1-12. |
74 | WANG Z, HONG J, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302. |
75 | GAO Z, CECATI C, DING S. A survey of fault diagnosis and fault-tolerant techniques—part II: fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62: 3768-3774. |
76 | 王一卉, 姜长泓. 模糊神经网络专家系统在动力锂电池组故障诊断中的应用[J]. 电测与仪表, 2015, 52: 118-123. |
WANG Y H, JIANG C H. Fuzzy neural network expert system for fault diagnosis in power lithium battery application[J]. Electric Measur Instrum, 2015, 52: 118-123. | |
77 | MA G, XU S, CHENG C. Fault detection of lithium-ion battery packs with a graph-based method[J]. Journal of Energy Storage, 2021, 43: 103209. |
78 | HU G, HUANG P, BAI Z, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery [J]. eTransportation, 2021, 10: 100140. |
79 | MOHD AMIRUDDIN A, ZABIRI H, TAQVI S, et al. Neural network applications in fault diagnosis and detection: an overview of implementations in engineering-related systems[J]. Neural Computing and Applications, 2020, 32: 447-472. |
80 | LIN R, PEI Z, YE Z, et al. Hydrogen fuel cell diagnostics using random forest and enhanced feature selection[J]. International Journal of Hydrogen Energy, 2020, 45(17): 10523-10535. |
81 | YAO L, FANG Z, XIAO Y, et al. An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine[J]. Energy, 2021, 214: 118866. |
82 | YAO L, XIAO Y, GONG X, et al. A novel intelligent method for fault diagnosis of electric vehicle battery system based on wavelet neural network[J]. Journal of Power Sources, 2020, 453: 227870. |
83 | ARDESHIRI R, BALAGOPALB, ALSABBAGH A, et al. Machine learning approaches in battery management systems: state of the art: remaining useful life and fault detection[C]. 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). IEEE, 2020, 1: 61-66. |
84 | XUE Q, LI G, ZHANG Y, et al. Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution[J]. Journal of Power Sources, 2021, 482: 228964. |
85 | 裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8): 1-13. |
HONG P, HU C H, SI X S, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55: 1-13. | |
86 | LI X, DAI K, WANG Z, et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method[J]. Journal of Energy Storage, 2020, 27: 101121. |
87 | 向兆军, 胡凤玲, 罗明华, 等. 基于电池组模型和聚类算法的锂离子电池组SOC不一致估计[J]. 机械工程学报, 2020, 56: 154-163. |
XIANG Z J, HU F L, LUO M H, et al. Estimation of SOC inconsistencies in lithium-ion battery packs based on battery pack modeling and clustering algorithm[J]. Journal of Mechanical Engineering, 2020, 56: 154-163. | |
88 | WANG Z, HONG J, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302. |
89 | HONG J, WANG Z, CHEN W, et al. Multi‐fault synergistic diagnosis of battery systems based on the modified multi‐scale entropy[J]. International Journal of Energy Research, 2019, 43: 8350-8369. |
90 | HONG J, WANG Z, CHEN W, et al. Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks[J]. Applied Energy, 2019, 254: 113684. |
[1] | 张念忠,宋强,王冠峰,王明生. 车用永磁同步电机无电流传感器控制研究[J]. 汽车工程, 2024, 46(2): 281-289. |
[2] | 焦志鹏, 马建, 赵轩, 张凯, 孟德安, 韩琪, 张昭. 基于电动汽车制动安全检测的短时工况及方法研究[J]. 汽车工程, 2024, 46(1): 109-119. |
[3] | 原江鑫, 何莉萍, 李耀东, 李罡. 电动汽车BMS从控板热分析及散热优化[J]. 汽车工程, 2024, 46(1): 128-138. |
[4] | 李致远, 鲁锐华, 余庆华, 颜伏伍. 动力电池热失控特征及防控技术研究分析[J]. 汽车工程, 2024, 46(1): 139-150. |
[5] | 张鹏博, 陈仁祥, 邵毅明, 孙世政, 闫凯波. 纯电动汽车电驱动系统故障诊断研究进展[J]. 汽车工程, 2024, 46(1): 61-74. |
[6] | 刘启全,马建,赵轩,张凯,孟德安,相里康. 基于值率模型的电动汽车动力电池电压异常检测[J]. 汽车工程, 2023, 45(9): 1728-1739. |
[7] | 李达,邓钧君,张照生,刘鹏,王震坡. 电动车辆动力电池安全预警策略研究综述[J]. 汽车工程, 2023, 45(8): 1392-1407. |
[8] | 贺伊琳,马建,杨舒凯,郑威,薛启帆. 融合预瞄特性的智能电动汽车稳定性模型预测控制研究[J]. 汽车工程, 2023, 45(5): 719-734. |
[9] | 廉玉波,吴恺,曾董,李松,王溥希. 基于整车平台的动力电池平台化研究[J]. 汽车工程, 2023, 45(5): 807-813. |
[10] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[11] | 吴忠强,张长兴. 考虑配电网负荷的电动汽车分布式充电控制[J]. 汽车工程, 2023, 45(4): 598-608. |
[12] | 吴志恒,刘爱民. 汽车永磁同步电机切换函数式混合控制策略[J]. 汽车工程, 2023, 45(4): 619-627. |
[13] | 王军年,高守林,杨钫,管畅洋,杨志华. 多行星排转矩定向分配电驱动桥振动特性优化[J]. 汽车工程, 2023, 45(3): 421-429. |
[14] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[15] | 陈吉清,李子涵,兰凤崇,蒋心平,潘威,陈继开. 基于非线性降维IC特征的实车电池SOH估计[J]. 汽车工程, 2023, 45(2): 199-208. |
|