汽车工程 ›› 2025, Vol. 47 ›› Issue (7): 1394-1403.doi: 10.19562/j.chinasae.qcgc.2025.07.016

• • 上一篇    

考虑非匹配扰动的主动悬架固定时间控制研究

陈潇凯1(),沈诚1,王茁伊1,刘向2   

  1. 1.北京理工大学机械与车辆学院,北京 100081
    2.南阳淅减汽车减振器有限公司,南阳 473000
  • 收稿日期:2025-02-07 修回日期:2025-04-03 出版日期:2025-07-25 发布日期:2025-07-18
  • 通讯作者: 陈潇凯 E-mail:chenxiaokai@263.net
  • 基金资助:
    北京市自然科学基金-小米创新联合基金项目(L243007);河南省重大科技专项项目(231100240300)

Research on Fixed-Time Control of Active Suspension System Considering Mismatched Disturbance

Xiaokai Chen1(),Cheng Shen1,Zhuoyi Wang1,Xiang Liu2   

  1. 1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081
    2.Nanyang CIJAN Automobile Shock Absorber Co. ,Ltd. ,Nanyang 473000
  • Received:2025-02-07 Revised:2025-04-03 Online:2025-07-25 Published:2025-07-18
  • Contact: Xiaokai Chen E-mail:chenxiaokai@263.net

摘要:

随着新能源汽车技术的发展,依赖车载传感器的智能悬架系统越来越普及。由于传感器存在测量噪声,在包含此类非高斯测量噪声的非匹配扰动下,经典控制算法无法很好地进行全状态观测,进而对控制系统性能造成很大影响。本文针对主动悬架中存在的传感噪声等非匹配扰动,以及系统非线性和未建模动态等匹配扰动,分别设计了能够对簧载质量系统和非簧载质量系统进行全状态观测的高阶滑模观测器,并进而设计了能够实现主动悬架全局固定时间收敛的闭环控制系统。仿真结果表明:随机路面工况下,相较于LQG以及扩张观测-滑模控制算法,本文提出的新型高阶滑模观测-固定时间滑模控制算法(SMO-FSMC)可以有效提升悬架的平顺性;相较于卡尔曼滤波器和扩张观测器,所提出的高阶滑模观测器对悬架系统的运动状态跟踪更准确,在面对扰动和测量噪声时系统具有更强的鲁棒性。减速带工况下,SMO-FSMC算法可以实现簧载质量垂向加速度的更快速收敛,有效改善了典型离散冲击工况的平顺性。

关键词: 主动悬架, 非匹配扰动, 固定时间滑模控制, 高阶有限时间滑模观测器

Abstract:

With the development of the EV technology, vehicle active suspension systems with onboard sensors have become increasingly widespread. However, due to the existence of measurement noise in sensors, classic control algorithms struggle to gain full-state observation under mismatched disturbances of non-Gaussian measurement noise, which severely affecting the performance of the suspension control systems. In this paper, for the challenges from mismatched disturbances with measurement noise in active suspension sensors, as well as the matched disturbances of the suspension intrinsic nonlinear and unmodeled dynamics, a high-order sliding mode observer (SMO) is designed to gain full-state observation for both the sprung and upsprung subsystems. Additionally, a fixed-time sliding mode controller (FSMC) is employed to establish a globally convergent closed-loop control system for the active suspension system. The simulation results show that the proposed SMO-FSMC algorithm significantly improves ride comfort compared to LQG-based and extended observer-sliding mode control algorithm under random road profile. Furthermore, the proposed system exhibits superior state tracking accuracy for the active suspension and greater robustness against external disturbances and measurement noise compared to Kalman filters and extended observers. Besides, under speed bump scenarios, the SMO-FSMC system can effectively attenuate the vertical acceleration of the sprung mass thus improving the ride comfort.

Key words: active suspension, mismatched disturbance, fixed-time sliding mode control, higher order sliding mode observer