汽车工程 ›› 2025, Vol. 47 ›› Issue (11): 2224-2237.doi: 10.19562/j.chinasae.qcgc.2025.11.016

• • 上一篇    

基于临界转角的分布式电驱动车辆AFS+DYC协同控制

夏旭1,2,任国全1(),张众杰2,王瑞萱1,潘世举2,李子先2   

  1. 1.陆军工程大学石家庄校区,石家庄 050003
    2.中国人民解放军联勤保障部队工程大学,天津 300161
  • 收稿日期:2025-03-28 修回日期:2025-04-29 出版日期:2025-11-25 发布日期:2025-11-28
  • 通讯作者: 任国全 E-mail:m18322537231@163.com
  • 基金资助:
    科技创新研究计划项目(202240)

Coordinated Control of AFS and DYC for Distributed Electric Drive Vehicles Based on Critical Turning Angle

Xu Xia1,2,Guoquan Ren1(),Zhongjie Zhang2,Ruixuan Wang1,Shiju Pan2,Zixian Li2   

  1. 1.Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003
    2.PLA Joint Logistics Support Force University of Engineering,Tianjin 300161
  • Received:2025-03-28 Revised:2025-04-29 Online:2025-11-25 Published:2025-11-28
  • Contact: Guoquan Ren E-mail:m18322537231@163.com

摘要:

为了提高分布式电驱动车辆在极限工况下的操纵稳定性,本文设计了一种基于临界转角划分区域的主动前轮转向(AFS)和直接横摆力矩控制(DYC)协同控制系统。首先,提出了一种基于临界转角阈值的轮胎状态区域判定方法,将轮胎状态区域划分为线性区域、过渡区域和饱和区域;然后在此基础上分区域分别建立了AFS和DYC控制器,并基于“线性距离系数”实现两种控制器自适应协同控制;接着根据车辆状态所处相平面区域来分配各轮转矩;最后,基于MATLAB/Simulink 和CarSim 联合仿真平台,在蛇行工况和双移线工况下开展了实验验证。结果表明,基于临界转角的判定方法能够准确识别轮胎状态区域,解决了实车中轮胎状态难以直接测量的问题,显著提升了控制器在未知轮胎参数或复杂工况下的适用性,在此基础上所设计的协同控制系统能够有效弥补单一控制器的不足,显著提高了车辆的操纵稳定性,具有一定的工程应用价值。

关键词: 分布式电驱动车辆, 主动前轮转向, 直接横摆力矩控制, 协同控制

Abstract:

In order to improve the maneuvering stability of distributed electric drive vehicles under extreme operating conditions, a cooperative control system of active front wheel steering (AFS) and direct yaw moment control (DYC) based on the critical turning angle divided regions is designed in this paper. Firstly, a method of determining the tire state region based on the critical angle threshold is proposed, and the tire state region is divided into linear region, transition region and saturation region. Then on this basis, the AFS and DYC controller is respectively established, and the adaptive cooperative control of the two controllers is realized based on the “linear distance coefficient”. Then, the torque of each wheel is assigned according to the phase plane region of the vehicle state. Finally, based on the joint simulation platform of MATLAB/Simulink and CarSim, experimental validation is carried out under serpentine and double-shift conditions. The results show that the critical angle determination method can accurately identify the tire state region, solve the problem of difficult direct measurement of the tire state in the real vehicle, and significantly improve the applicability of the controller in the unknown tire parameters or complex working conditions. The collaborative control system designed on the basis of this system can effectively make up for the shortcomings of a single controller, significantly improve the stability of the vehicle's handling, and has certain engineering application value.

Key words: distributed electric drive vehicles, active front-wheel steering, direct yaw moment control, coordinated control