汽车工程 ›› 2023, Vol. 45 ›› Issue (8): 1320-1332.doi: 10.19562/j.chinasae.qcgc.2023.08.003

所属专题: 智能网联汽车技术专题-控制2023年

• • 上一篇    下一篇

车辆队列抗扰抗内切协同路径跟踪控制

边有钢1,2,张田田1,谢和平1,3,秦洪懋1,2(),杨泽宇1,2   

  1. 1.湖南大学机械与运载工程学院,汽车车身先进设计制造国家重点实验室,长沙 410082
    2.湖南大学无锡智能控制研究院,无锡 214115
    3.徐州徐工矿业机械有限公司,徐州 210009
  • 收稿日期:2023-05-05 修回日期:2023-06-16 出版日期:2023-08-25 发布日期:2023-08-17
  • 通讯作者: 秦洪懋 E-mail:qinhongmao@vip.sina.com
  • 基金资助:
    国家自然科学基金(52002126, 52272415, 52202493)

Anti-disturbance and Anti-corner-cutting Control for Collaborative Path Tracking of Vehicle Platoon

Yougang Bian1,2,Tiantian Zhang1,Heping Xie1,3,Hongmao Qin1,2(),Zeyu Yang1,2   

  1. 1.College of Mechanical and Vehicle Engineering,Hunan University,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha  410082
    2.Wuxi Intelligent Control Research Institute of Hunan University,Wuxi  214115
    3.Xuzhou XCMG Mining Machinery Co. ,Ltd. ,Xuzhou  210009
  • Received:2023-05-05 Revised:2023-06-16 Online:2023-08-25 Published:2023-08-17
  • Contact: Hongmao Qin E-mail:qinhongmao@vip.sina.com

摘要:

本文研究过弯场景下车辆队列的抗扰抗内切协同路径跟踪控制方法。首先,基于前车直接跟随式方案,采用圆弧曲线跟踪路径代替一般直线跟踪路径,构建车辆队列过弯抗内切策略,以降低车辆队列过弯时的整体跟踪误差;其次,设计卡尔曼滤波器和龙伯格观测器,以解决跟随车位置状态噪声及航向状态噪声或不易量测的问题;然后,设计协同路径跟踪控制器,并基于李雅普诺夫稳定性理论导出系统稳定的充分条件,指导控制器参数设计;最后,通过数值仿真和实车试验验证控制器设计的可行性和有效性。

关键词: 智能网联汽车, 路径跟踪控制, 协同控制, 抗扰控制

Abstract:

The anti-disturbance and anti-corner-cutting collaborative path tracking control method for a vehicle platoon under the turning scenario is studied in this paper. Firstly, based on the predecessor-following topology scheme,a platoon turning anti-corner-cutting strategy is constructed by using circular-arc curve tracking path to replace the general straight-line tracking path, alleviating the overall tracking error of the vehicle platoon during turning. Secondly, a Kalman filter and a Luenberger observer are designed to address the problem of position noise and heading noise of the following vehicle or difficult measurement. Then, a collaborative path tracking controller is designed. By using the Lyapunov stability theory, sufficient conditions for system stability are derived for controller parameter design. Finally, the feasibility and effectiveness of the designed controller are validated through numerical simulation and real-vehicle experiments.

Key words: intelligent and connected vehicle, path tracking control, collaborative control, anti-disturbance control