汽车工程 ›› 2024, Vol. 46 ›› Issue (10): 1766-1779.doi: 10.19562/j.chinasae.qcgc.2024.10.005

• • 上一篇    下一篇

轮毂电机驱动电动汽车4WS和DYC协调控制

张海川,王姝(),赵轩,周辰雨,虢沧岩,周猛   

  1. 长安大学汽车学院,西安 710000
  • 收稿日期:2024-03-16 修回日期:2024-04-10 出版日期:2024-10-25 发布日期:2024-10-21
  • 通讯作者: 王姝 E-mail:shuwang@chd.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(52172362);陕西省重点研发计划项目(2024GX-YBXM-260);陕西省科技成果转化计划项目(2024CG-CGZH-19);陕西省自然科学基础研究项目(2022JQ-543)

Coordination Control of 4WS and DYC for in Wheel Motor Driven Electric Vehicle

Haichuan Zhang,Shu Wang(),Xuan Zhao,Chenyu Zhou,Cangyan Guo,Meng Zhou   

  1. School of Automobile,Chang’an University,Xian 710000
  • Received:2024-03-16 Revised:2024-04-10 Online:2024-10-25 Published:2024-10-21
  • Contact: Shu Wang E-mail:shuwang@chd.edu.cn

摘要:

为了提高轮毂电机驱动电动汽车的路径跟踪能力和操纵稳定性,本文针对主动四轮转向系统(4WS)和直接横摆力矩控制系统(DYC)提出一种新型的协调控制策略。首先,综合考虑车辆的路径跟踪性能和操纵稳定性,建立一种共享转向控制模型,并在此基础上提出基于非合作Nash博弈的4WS控制策略。其次,为了提高危险行驶工况下的车辆侧向稳定性,基于质心侧偏角相平面将车辆状态划分为稳定区域、过渡区域和失稳区域,并分区域建立DYC控制器。再次,为了实现后轮转向与直接横摆力矩的协同控制,建立基于模糊神经网络的ARS/DYC协调控制器。最后,利用CarSim/Simulink联合仿真平台和硬件在环平台,分别进行双移线工况下的试验验证。研究结果表明,所提出的控制策略能够有效地提高车辆在极端行驶工况下的路径跟踪精度和操纵稳定性能。

关键词: 汽车工程, 轮毂电机驱动电动汽车, 四轮转向, 直接横摆力矩控制, 协调控制

Abstract:

In order to improve the path tracking ability and handling stability of in wheel motor driven electric vehicles, a novel coordination control strategy for active four-wheel steering (4WS) and direct yaw moment control (DYC) is proposed. Firstly, considering the path tracking performance and handling stability of vehicles, a shared steering model is established and on this basis, the 4WS control strategy based on non-cooperative Nash game theory is proposed. Secondly, in order to improve the lateral stability of the vehicle under extreme conditions, the vehicle state is divided into stable, transitional, and unstable regions based on the phase plane of the center of mass sideslip angle, and the DYC controller is established in each region. Then, in order to achieve coordinated control of rear wheel steering and direct yaw moment, the coordination controller based on fuzzy neural network is established between ARS and DYC. Finally, the CarSim/Simulink co-simulation platform and Hardware-in-the Loop (HIL) platform are used to conduct experimental verification under dual line shifting conditions. The research results show that the proposed control strategy can effectively improve the path tracking precision and handling stability of the vehicle under extreme driving conditions.

Key words: automotive engineering, in wheel motor driven electric vehicle, four-wheel steering, direct yaw moment control, coordination control