| [1] |
CHAI Y, SAPP B, BANSAL M, et al. Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction[J]. arXiv preprint arXiv:, 2019.
|
| [2] |
HONG J, SAPP B, PHILBIN J. Rules of the road: predicting driving behavior with a convolutional model of semantic interactions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8454-8462.
|
| [3] |
TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]. International Conference on Machine Learning. PMLR, 2019: 6105-6114.
|
| [4] |
GAO J, SUN C, ZHAO H, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11525-11533.
|
| [5] |
LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part II 16. Springer, 2020: 541-556.
|
| [6] |
YE M, CAO T, CHEN Q. TPCN: temporal point cloud networks for motion forecasting[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11318-11327.
|
| [7] |
DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[M/OL]. arXiv, 2018[2023-03-16].
|
| [8] |
VARADARAJAN B, HEFNY A, SRIVASTAVA A, et al. Multipath++: efficient information fusion and trajectory aggregation for behavior prediction[C]. 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 7814-7821.
|
| [9] |
MOHAMED A, QIAN K, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14424-14432.
|
| [10] |
LI L L, YANG B, LIANG M, et al. End-to-end contextual perception and prediction with interaction transformer[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 5784-5791.
|
| [11] |
MERCAT J, GILLES T, EL ZOGHBY N, et al. Multi-head attention for multi-modal joint vehicle motion forecasting[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 9638-9644.
|
| [12] |
YU C, MA X, REN J, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XII 16. Springer, 2020: 507-523.
|
| [13] |
NGIAM J, CAINE B, VASUDEVAN V, et al. Scene transformer: a unified architecture for predicting multiple agent trajectories[J]. arXiv preprint arXiv:, 2021.
|
| [14] |
HUANG Z, MO X, LV C. Multi-modal motion prediction with transformer-based neural network for autonomous driving[C]. 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 2605-2611.
|
| [15] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
| [16] |
NAYAKANTI N, AL-RFOU R, ZHOU A, et al. Wayformer: motion forecasting via simple & efficient attention networks[C]. 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023: 2980-2987.
|
| [17] |
ZHOU Z, YE L, WANG J, et al. HiVT: hierarchical vector transformer for multi-agent motion prediction[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 8823-8833.
|
| [18] |
LIU Y, ZHANG J, FANG L, et al. Multimodal motion prediction with stacked transformers[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7577-7586.
|
| [19] |
WANG X, SU T, DA F, et al. ProphNet: efficient agent-centric motion forecasting with anchor-informed proposals[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21995-22003.
|
| [20] |
GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2255-2264.
|
| [21] |
SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVIII 16. Springer, 2020: 683-700.
|
| [22] |
ZHAO H, GAO J, LAN T, et al. TNT: target-driven trajectory prediction[C]. Conference on Robot Learning. PMLR, 2021: 895-904.
|
| [23] |
GU J, SUN C, ZHAO H. DenseTNT: end-to-end trajectory prediction from dense goal sets[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 15303-15312.
|
| [24] |
PHAN-MINH T, GRIGORE E C, BOULTON F A, et al. CoverNet: multimodal behavior prediction using trajectory sets[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14074-14083.
|
| [25] |
ZENG W, LIANG M, LIAO R, et al. LanerCNN: distributed representations for graph-centric motion forecasting[C]. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021: 532-539.
|
| [26] |
GILLES T, SABATINI S, TSISHKOU D, et al. HOME: heatmap output for future motion estimation[C]. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). IEEE, 2021: 500-507.
|
| [27] |
CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8748-8757.
|
| [28] |
GILLES T, SABATINI S, TSISHKOU D, et al. GOHOME: graph-oriented heatmap output for future motion estimation[C]. 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 9107-9114.
|