1 |
李文博, 刘羽婧, 张峻铖, 等. 驾驶员情绪-驾驶风险机理分析[J]. 机械工程学报, 2022, 58(22): 379-394.
|
|
LI W B, LIU Y J, ZHANG J C, et al. Analysis of the influence mechanism of driver’s emotion on driving risk[J]. Chinese Journal of Mechanical Engineering, 2022, 58(22): 379-394.
|
2 |
TAMANANI R, MURESAN R, Al-DWEIK A. Estimation of driver vigilance status using real-time facial expression and deep learning[J]. IEEE Sensors Letters, 2021, 5(5): 1-4.
|
3 |
XIAO H, LI W, ZENG G, et al. On-road driver emotion recognition using facial expression[J]. Applied Sciences, 2022, 12(2): 807.
|
4 |
KODHAI E, POOVESWARI A, SHARMILA P, et al. Literature review on emotion recognition system[C]. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). IEEE, 2020: 1-4.
|
5 |
NAN Y, JU J, HUA Q, et al. A-MobileNet: an approach of facial expression recognition[J]. Alexandria Engineering Journal, 2022, 61(6): 4435-4444.
|
6 |
梁艳, 温兴, 潘家辉. 融合全局与局部特征的跨数据集表情识别方法[J]. 智能系统学报, 2023, 18(6): 1205-1212.
|
|
LIANG Y, WEN X, PAN J H. Cross-dataset facial expression recognition method fusing global and local features [J]. CAAI Transactions on Intelligent Systems, 2023,18(6): 1205-1212.
|
7 |
MINAEE S, MINAEI M, ABDOLRASHIDI A. Deep-emotion: facial expression recognition using attentional convolutional network[J]. Sensors, 2021, 21(9): 3046.
|
8 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
|
9 |
WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]. Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, the Netherlands, October 11-14, 2016, Proceedings, part VII 14. Springer International Publishing, 2016: 499-515.
|
10 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
11 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
|
12 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
13 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
|
14 |
KANADE T, COHN J F, TIAN Y. Comprehensive database for facial expression analysis[C]. Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (cat. No. PR00580). IEEE, 2000: 46-53.
|
15 |
GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[C]. Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Korea, November 3-7, 2013. Proceedings, Part III 20. Springer berlin heidelberg, 2013: 117-124.
|
16 |
MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild[J]. IEEE Transactions on Affective Computing, 2017, 10(1): 18-31.
|
17 |
MAHMOUDIMA. MMA facial expression[DB/OL]. (2020-01-01)[2024-2-15]. https://www.kaggle.com/mahmoudima/mma-facial-expression?select=MMAFEDB.
|
18 |
LI S, DENG W, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2852-2861.
|
19 |
JEONG M, KO B C. Driver’s facial expression recognition in real-time for safe driving[J]. Sensors, 2018, 18(12): 4270.
|
20 |
HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
|
21 |
TAN M, LE Q. EfficientNetV2: smaller models and faster training[C]. International Conference on Machine Learning. PMLR, 2021: 10096-10106.
|