汽车工程 ›› 2024, Vol. 46 ›› Issue (9): 1537-1545.doi: 10.19562/j.chinasae.qcgc.2024.09.001

• •    

基于时空图神经网络的异构交通参与者风险预测

孟相浩1,牛凌2,席军强1,陈丹妮1,吕超1()   

  1. 1.北京理工大学机械与车辆学院,北京 100081
    2.清华大学深圳国际研究生院,深圳 518055
  • 收稿日期:2024-02-20 修回日期:2024-03-27 出版日期:2024-09-25 发布日期:2024-09-19
  • 通讯作者: 吕超 E-mail:chaolu@bit.edu.cn
  • 基金资助:
    科技创新2030——“新一代人工智能”重大项目(2022ZD0115503);国家自然科学基金(52372405)

Risk Prediction of Heterogeneous Traffic Participants Based on Spatio-Temporal Graph Neural Networks

Xianghao Meng1,Ling Niu2,Junqiang Xi1,Danni Chen1,Chao Lü1()   

  1. 1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing  100081
    2.Tsinghua Shenzhen International Graduate School,Shenzhen  518055
  • Received:2024-02-20 Revised:2024-03-27 Online:2024-09-25 Published:2024-09-19
  • Contact: Chao Lü E-mail:chaolu@bit.edu.cn

摘要:

有效预测驾驶员视野下的多交通参与者未来风险指标是为人类驾驶员提供风险预警,规避潜在碰撞风险的关键。大多数现有对风险的研究仅考虑场景中单一个体与本车之间的成对交互关系,并从评估而非预测的角度展开研究,而忽略异构交通参与者之间不同的交互关系及未来风险状态。本文提出了一种基于时空图卷积神经网络的异构多目标风险预测方法Risk-STGCN,通过图卷积及时间卷积分别对单帧场景图信息与时序信息进行学习,结合多层时序预测网络对多目标风险指标TTC进行预测。在开源BLVD与实车自采数据集上进行了训练验证,并与常用序列预测模型进行对比。实验结果表明,所提模型在不同数据集上的平均TTC误差均在0.95 s以下,多实验指标均优于文中所提到的其他模型,具有良好的鲁棒性,同时提升了复杂交通场景下风险预测的可解释性。

关键词: 智能汽车, 多交通参与者, 交互表征, 风险预测, 时空图神经网络

Abstract:

Effectively predicting the future risk indicators of multiple traffic participants under the driver's field of vision is the key to providing risk warnings to human drivers and avoiding potential collision risk. Most existing research on risk only considers the pairwise interaction between a single individual and the vehicle in the scene, and conducts research from the perspective of evaluation rather than prediction, while ignoring the different interaction between heterogeneous traffic participants and future risk status. This paper proposes a heterogeneous multi-objective risk prediction method Risk-STGCN based on spatiotemporal graph convolutional neural network, using graph convolution and temporal convolution to learn single-frame scene graph information and timing information respectively, combined with multi-layer timing prediction network to predict the multi-objective risk indicator TTC. Training and verification are conducted on the open source data set BLVD and the real vehicle self-collected data set, which is then compared with commonly used sequence prediction models. The experimental results show that the average TTC error of the proposed model on different data sets is less than 0.95 s, with multiple experimental indicators better than other models mentioned in this paper. The proposed model has good robustness and improves the interpretability of risk prediction in complex traffic scenarios.

Key words: intelligent vehicles, multiple traffic participants, interactive representation, risk prediction, spatio-temporal graph neural network