汽车工程 ›› 2025, Vol. 47 ›› Issue (11): 2212-2223.doi: 10.19562/j.chinasae.qcgc.2025.11.015

• • 上一篇    

分布式电驱动角模块车辆横摆稳定性鲁棒协同控制

张新荣1,张毓栋1,李星宇2,苏炎召2(),王昊钰3,黄晋2()   

  1. 1.长安大学,道路施工技术与装备教育部重点实验室,西安 710064
    2.清华大学车辆与运载学院,北京 100084
    3.伊利诺伊大学厄巴纳—香槟分校格兰杰工程学院,美国 伊利诺伊州双子城厄巴纳–香槟市 61801
  • 收稿日期:2025-03-05 修回日期:2025-04-16 出版日期:2025-11-25 发布日期:2025-11-28
  • 通讯作者: 苏炎召,黄晋 E-mail:yanzhaosu66@163.com;huangjin@tsinghua.edu.cn
  • 基金资助:
    国家重点研发计划项目(2024YFB2505101)

Robust Coordinated Yaw Stability Control for Distributed Electric Drive Wheel Corner Module Vehicle

Xinrong Zhang1,Yudong Zhang1,Xingyu Li2,Yanzhao Su2(),Haoyu Wang3,Jin Huang2()   

  1. 1.Chang'an University,Key Laboratory of Road Construction Technology and Equipment of Ministry of Education,Xi'an 710064
    2.School of Vehicle and Mobility,Tsinghua University,Beijing 100084
    3.Grainger College of Engineering,University of Illinois Urbana-Champaign,Urbana,IL 61801,USA
  • Received:2025-03-05 Revised:2025-04-16 Online:2025-11-25 Published:2025-11-28
  • Contact: Yanzhao Su,Jin Huang E-mail:yanzhaosu66@163.com;huangjin@tsinghua.edu.cn

摘要:

在紧急避障或急转弯等极限工况下,车辆可能出现横摆失稳现象。分布式电驱动角模块车辆具备四轮独立驱动(4WID)和独立转向(4WIS)的高机动性优势,但由于取消了轮间物理约束,极限工况下容易出现横摆失稳问题。为了提高极限工况下角模块车辆的横摆稳定性,本文提出了一种基于约束动力学的车辆横摆稳定性控制策略,设计了嵌入等式约束驱动的自适应鲁棒直接横摆力矩控制(ARC)和纵向车速控制,同时设计了满足稳态转弯等式约束的主动后轮转向控制策略(ARS),融合四轮转矩优化分配策略,实现了ARC+ARS的协同控制机制,提高了角模块车辆在极限工况下的横摆稳定性。联合仿真结果表明,在高速高附双移线工况下,所提出的控制策略使横摆角速度误差和质心侧偏角的均方根分别至少减小53.1%和15.3%;在中速低附工况下,均方根分别至少减小77.5%和15.2%,并在处理系统不确定性和外部干扰时展现出较强的鲁棒性。

关键词: 角模块车辆, 横摆稳定性, 直接横摆力矩控制, 主动后轮转向, 协同控制

Abstract:

Under extreme scenarios such as emergency obstacle avoidance or sharp turns, vehicles may experience yaw instability. Distributed corner module vehicles, equipped with independent four-wheel drive (4WID) and independent four-wheel steering (4WIS), offer high mobility advantages. However, the elimination of physical constraints between wheels increases the risk of yaw instability under extreme conditions. To enhance the yaw stability of corner module vehicles in such scenarios, in this paper a constraint-based yaw stability control strategy is proposed. An adaptive robust direct yaw moment control (ARC) driven by embedded equality constraints is designed, along with a longitudinal speed control mechanism. Additionally, an active rear steering (ARS) control strategy satisfying the steady-state cornering equality constraint is developed. By integrating a four-wheel torque optimization strategy, the proposed ARC+ARS cooperative control mechanism effectively improves the yaw stability of corner module vehicles under extreme conditions. The co-simulation results show that in a high-speed, high-adhesion double lane change scenario, the proposed control strategy reduces the root mean square (RMS) of yaw rate error and centroid sideslip angle by at least 53.1% and 15.3%, respectively. In a medium-speed, low-adhesion scenario, the reduction reaches at least 77.5% and 15.2%, respectively, with strong robustness in dealing with the systematic uncertainties and external disturbances.

Key words: wheel corner module vehicles, yaw stability, direct yaw moment control, active rear steering, coordinated control