1 |
MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. IPCC: climate change 2021: the physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change[M]. In Press. Cambridge University Press, 2021.
|
2 |
U.S. Energy Information Administration (EIA). U.S. energy-related carbon dioxide emissions, 2019[EB/OL]. U.S. Energy Information Administration (EIA),2020-09-30.(2020-09-30)[2021-10-29] .https://www.eia.gov/environment/emissions/carbon/.
|
3 |
FACT SHEET: Biden administration advances the future of sustainable fuels in american aviation [EB/OL]. The White House, 2021-09-09. (2021-09-09)[2021-10-29] .https://www.whitehouse.gov/briefing-room/statements-releases/2021/09/09/fact-sheet-biden-administration-advances-the-future-of-sustainable-fuels-in-american-aviation/.
|
4 |
到“十四五”末 中国可再生能源发电装机占比将超50%[EB/OL]. 中新网,2021-03-30.(2021-03-30)[2021-10-28] .http://www.chinanews.com/cj/2021/03-30/9443399.shtml.
|
|
By the end of the 14th Five-Year Plan, China’s renewable energy power generation capacity will account for more than 50% of the installed capacity [EB/OL]. China News Service, 2021-03-30. (2021-03-30) [2021-10- 28] .http://www.chinanews.com/cj/2021/03-30/9443399.shtml.
|
5 |
IRENA. Renewable power generation costs 2020 [R]. Abu Dhabi: IRENA, 2020.
|
6 |
中国石油经济技术研究院. 2050年世界和中国能源展望(2020版)[R]. 北京: 中国石油经济技术研究院, 2020.
|
|
China Petroleum Institute of Economics and Technology. World and China energy outlook in 2050 (2020 edition) [R]. Beijing: China Petroleum Institute of Economics and Technology, 2020.
|
7 |
2020年中国可再生能源展望报告[R]. 北京:国家发改委能源研究所, 2021.
|
|
2020 China renewable energy outlook report[R]. Beijing: Energy Research Institute of National Development and Reform Commission, 2021.
|
8 |
CHEN X, LIU Y, WANG Q, et al. Pathway toward carbon-neutral electrical systems in China by mid-century with negative CO2 abatement costs informed by high-resolution modeling[J]. Joule, 2021, 5(10): 2715-2741.
|
9 |
中国汽车工业协会[EB/OL].[2021-10-29] .http://www.caam.org.cn/.
|
|
China Association of Automobile Manufacturers [EB/OL].[2021-10-29] .http://www.caam.org.cn/.
|
10 |
中国汽车工程学会. 节能与新能源汽车技术路线图2.0[M]. 北京:机械工业出版社, 2021.
|
|
China Society of Automotive Engineers. Energy-saving and new energy vehicle technology roadmap 2.0[M]. Beijing:China Machinery Industry Press, 2021.
|
11 |
中汽中心. 中国汽车低碳行动计划报告[R]. 北京: 中汽中心, 2021.
|
|
CATARC. China automobile low carbon action plan (CALCP) research report[R]. Beijing: CATARC, 2021.
|
12 |
全球能源互联网发展合作组织. 中国2060年前碳中和研究报告[R]. 北京: 全球能源互联网发展合作组织, 2021.
|
|
Global Energy Interconnection Development and Cooperation Organization. Research report of China’s carbon neutrality by 2060[R]. Beijing: Global Energy Interconnection Development and Cooperation Organization, 2021.
|
13 |
VALERA-MEDINA A, XIAO H, OWEN-JONESC M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69:63-102.
|
14 |
MEYER P S, YUNG J W, AUSUBEL J H. A primer on logistic growth and substitution: the mathematics of the loglet lab software[J]. Technological Forecasting & Social Change, 1999, 61(3):247-271.
|
15 |
HAO X, WANG H, LIN Z, et al. Seasonal effects on electric vehicle energy consumption and driving range: a case study on personal, taxi, and ridesharing vehicles[J]. Journal of Cleaner Production, 2019, 249:119403.
|
16 |
世界资源研究所.中国新能源汽车规模化推广对电网的影响分析[R]. 北京: 世界资源研究所, 2020.
|
|
WRI.Analysis of the impact of the large-scale promotion of China's new energy vehicles on the power grid[R]. Beijing: World Resources Institute, 2020.
|
17 |
段小宇, 胡泽春, 崔岩, 等. 长时间尺度下的电动汽车有序充放电调度[J]. 电网技术, 2018, 42(12): 4037-4044.
|
|
DUAN Xiaoyu, HU Zechun, CUI Yan, et al. Ordered charging and discharging scheduling of electric vehicles on a long-term scale[J].Power System Technology,2018,42(12):4037-4044.
|
18 |
California Independent System Operator. California vehicle-grid integration (VGI) roadmap: enabling vehicle-based grid services[R]. 2014.
|
19 |
胡晶,李海滨,顾海涛.燃料电池的空间应用技术发展[J].上海航天(中英文),2021,38(1):97-104.
|
|
HU Jing, LI Haibin, GU Haitao. Development of space application technology of fuel cells[J]. Shanghai Aerospace (Chinese and English), 2021, 38(1): 97-104.
|
20 |
唐林江, 张宝林, 陈滔, 等. 应用于空间燃料电池的氢技术研究进展[J]. 空间电子技术, 2018,15(3) :87-94.
|
|
TANG Linjiang, ZHANG Baolin, CHEN Tao, et al. Research progress of hydrogen technology applied to space fuel cells[J].Space Electronics Technology,2018,15(3):87-94.
|
21 |
MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205.
|
22 |
中国氢能联盟.中国氢能源及燃料电池产业手册(2020)[R]. 北京:中国氢能联盟, 2021.
|
|
China Hydrogen Energy Alliance.China hydrogen energy and fuel cell industry manual (2020)[R]. Beijing: China Hydrogen Energy Alliance, 2021.
|
23 |
HART D, JONES S, LEWIS J. The fuel cell industry review 2020[R]. 2020.
|
24 |
IEA. The Future of hydrogen[R]. Paris: IEA, 2019.
|
25 |
IEA. Global hydrogen review 2021[R]. Paris: IEA, 2021
|
26 |
IEA. Ammonia technology roadmap [R]. Paris: IEA, 2021
|
27 |
The World Steel Association.2021 world steel in figures [R]. Brussels: World Steel Association,2021
|
28 |
IEA. Technology roadmap hydrogen and fuel cells[R]. Paris: IEA, 2015
|
29 |
SAFARI F, DINCER I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production[J]. Energy Conversion and Management, 2020, 205: 112182.
|
30 |
VARGHESE O K, GRIMES C A. Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes[J]. Solar Energy Materials & Solar Cells, 2008, 92(4):374-384.
|
31 |
Hydrogen Council. Hydrogen scaling up: a sustainable pathway for the global energy transition[R]. Belgium. Hydrogen Council, 2017.
|
32 |
中华人民共和国工业和信息化部.新能源汽车推广应用推荐车型目录(2020年第12批)车型主要参数[EB/OL]. https://www.miit.gov.cn/cms_files/filemanager/oldfile/miit/n1146290/n1146402/n1146440/c8094689/part/8094700.pdf, 2020/11/30.
|
|
Ministry of Industry and Information Technology of the People’s Republic of China. Catalogue of recommended models for the promotion and application of new energy vehicles (12th batch in 2020) model main parameters [EB/OL]. https://www.miit.gov.cn/cms_files/filemanager/oldfile/miit/n1146290/n1146402/n1146440/c8094689/part/8094700.pdf, 2020/11/30.
|
33 |
YOSHIZUMI T, KUBO H, OKUMURA M. Development of high-performance FC stack for the new MIRAI[C]. SAE Paper 2021-01-0740.
|
34 |
QIU D, PENG L, YI P, et al. Review on proton exchange membrane fuel cell stack assembly: quality evaluation, assembly method, contact behavior and process design[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111660.
|
35 |
VALERA-MEDINA A, AMER-HATEM F, AZAD A K, et al. Review on ammonia as a potential fuel: from synthesis to economics[J]. Energy & Fuels, 2021, 35(9): 6964-7029.
|
36 |
YAPICIOGLU A, DINCER I. A review on clean ammonia as a potential fuel for power generators[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 96-108.
|
37 |
VUKADINOVIC V, HABISREUTHER P, ZARZALIS N. Experimental study on combustion characteristics of conventional and alternative liquid fuels[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12).
|
38 |
KALVAKALA K C, PAL P, AGGARWAL S K. Effects of fuel composition and octane sensitivity on polycyclic aromatic hydrocarbon and soot emissions of gasoline–ethanol blend surrogates[J]. Combustion and Flame, 2020, 221: 476-486.
|
39 |
KHUDHAIR O, SHAHAD H A K. A review of laminar burning velocity and flame speed of gases and liquid fuels[J]. International Journal of Current Engineering and Technology, 2017, 7(1): 183-197.
|
40 |
WESTBROOK C K, DRYER F L. Comprehensive mechanism for methanol oxidation[J]. Combustion Science and Technology, 1979, 20(3-4): 125-140.
|
41 |
GRANNELL S M, ASSANIS D N, BOHAC S V, et al. The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(4).
|
42 |
HUANG P H, KUO J K, JIANG W Z, et al. Simulation analysis of hydrogen recirculation rates of fuel cells and the efficiency of combined heat and power[J]. International Journal of Hydrogen Energy, 2021, 46(31): 16823-16835.
|
43 |
蒋洪德, 任静, 李雪英,等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34(29):5096-5102.
|
|
JIANG Hongde, REN Jing, LI Xueying, et al. Current status and development trend of heavy-duty gas turbines[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(29):5096-5102.
|
44 |
ZHANG Z, DU E, TENG F, et al. Modeling frequency dynamics in unit commitment with a high share of renewable energy[J]. IEEE Transactions on Power Systems, 2020, 35(6).
|