汽车工程 ›› 2022, Vol. 44 ›› Issue (4): 465-475.doi: 10.19562/j.chinasae.qcgc.2022.04.002
所属专题: 新能源汽车技术-动力电池&燃料电池2022年
收稿日期:
2021-11-02
修回日期:
2022-01-10
出版日期:
2022-04-25
发布日期:
2022-04-22
通讯作者:
黄沛丰
E-mail:pfhuang@hnu.edu.cn
基金资助:
Shoutong Liu,Peifeng Huang(),Zhonghao Bai
Received:
2021-11-02
Revised:
2022-01-10
Online:
2022-04-25
Published:
2022-04-22
Contact:
Peifeng Huang
E-mail:pfhuang@hnu.edu.cn
摘要:
本文中聚焦机械滥用下的动力电池安全研究,总结和分析了锂离子电池在压痕、针刺和压缩等机械滥用条件下的失效机理,并详细阐述了目前针对电池机械滥用仿真的多种分析模型。最后对未来关于锂离子电池机械滥用失效机理、仿真模型和安全设计方面的研究做出展望。
刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475.
Shoutong Liu,Peifeng Huang,Zhonghao Bai. A Review on Research Progress in Failure Mechanism and Simulation Model of Li-ion Battery Related to Mechanical Abuse[J]. Automotive Engineering, 2022, 44(4): 465-475.
1 | MIKOLAJCZAK C, KAHN M, WHITE K, et al. Lithium-ion batteries hazard and use assessment[M]. Springer Science & Business Media, 2012. |
2 | CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021,59:83-99. |
3 | SHEIKH M, ELMARAKBI A, ELKADY M. Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions[J]. Journal of Power Sources, 2017,370:61-70. |
4 | SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions[J]. Journal of Power Sources, 2012,220:360-372. |
5 | LIU B, JIA Y, YUAN C, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2019,24:85-112. |
6 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: a review[J]. Journal of Power Sources, 2016,306:178-192. |
7 | SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity[J]. Journal of Power Sources, 2012,201:307-321. |
8 | SAHRAEI E, MEIER J, WIERZBICKI T. Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells[J]. Journal of Power Sources, 2014,247:503-516. |
9 | GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells[J]. Journal of Power Sources, 2012,214:377-385. |
10 | LIU B, WANG X, CHEN H, et al. A Simultaneous multiscale and multiphysics model and numerical implementation of a core-shell model for lithium-ion full-cell batteries[J]. Journal of Applied Mechanics, Transactions ASME, 2019,86(4). |
11 | GOODMAN J K S, MILLER J T, KREUZER S, et al. Lithium-ion cell response to mechanical abuse: three-point bend[J]. Journal of Energy Storage, 2020,28:101244. |
12 | SANTHANAGOPALAN S, RAMADASS P, ZHANG J Z. Analysis of internal short-circuit in a lithium ion cell[J]. Journal of Power Sources, 2009,194(1):550-557. |
13 | LIU B, JIA Y, LI J, et al. Safety issues caused by internal short circuits in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018,6(43):21475-21484. |
14 | SHEIKH M, ELMARAKBI A, REHMAN S. A combined experimental and simulation approach for short circuit prediction of 18650 lithium-ion battery under mechanical abuse conditions[J]. Journal of Energy Storage, 2020,32:101833. |
15 | YUAN C, WANG L, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery[J]. Journal of Power Sources, 2020,467:228360. |
16 | FENG X, OUYANG M, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2018,10:246-267. |
17 | WANG Q, PING P, ZHAO X, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012,208:210-224. |
18 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015,6(1). |
19 | FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019,246:53-64. |
20 | ZHU J, ZHANG X, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression[J]. Journal of Power Sources, 2016,336:332-340. |
21 | 许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020,9(4):1113-1126. |
XU H, FAN Y, ZHANG Z, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020,9(4):1113-1126. | |
22 | 范文杰. 18650锂离子电池在机械滥用下的安全性能研究[D]. 太原:太原理工大学, 2019. |
FAN W. Study on safety performance of 18650 lithium ion battery under mechanical abuse[D]. Taiyuan :Taiyuan University of Technology, 2019. | |
23 | 兰凤崇, 郑文杰, 李志杰, 等. 车用动力电池的挤压载荷变形响应及内部短路失效分析[J]. 华南理工大学学报(自然科学版), 2018,46(6):65-72. |
LAN F, ZHENG W, LI Z, et al. Compression load-deformation response and internal short circuit failure analysis of vehicle powered batteries[J]. Journal of South China University of Technology(Natural Science Edition), 2018,46(6):65-72. | |
24 | XU J, LIU B, HU D. State of charge dependent mechanical integrity behavior of 18650 lithium-ion batteries[J]. Scientific Reports, 2016,6(1). |
25 | ZHU J, KOCH M M, LIAN J, et al. Mechanical deformation of lithium-ion pouch cells under in-plane loads-part i: experimental investigation[J]. Journal of the Electrochemical Society, 2020,167(9):90533. |
26 | LAI W, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions[J]. Journal of Power Sources, 2014,248:789-808. |
27 | XIAO F, XING B, XIA Y. Mechanical response of laterally-constrained prismatic battery cells under local loading[C]. SAE Paper 2020-01-0200. |
28 | BAI J, WANG Z, GAO T, et al. Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating[J]. Journal of Power Sources, 2021,507:230305. |
29 | SAHRAEI E, WIERZBICKI T, HILL R, et al. Crash safety of lithium-ion batteries towards development of a computational model [C]. SAE Paper 2010-01-1078. |
30 | KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells[J]. International Journal of Impact Engineering, 2017,108:205-216. |
31 | LI W, XIA Y, CHEN G, et al. Comparative study of mechanical-electrical-thermal responses of pouch, cylindrical, and prismatic lithium-ion cells under mechanical abuse[J]. Science China Technological Sciences, 2018,61(10):1472-1482. |
32 | LUO H, XIA Y, ZHOU Q. Mechanical damage in a lithium-ion pouch cell under indentation loads[J]. Journal of Power Sources, 2017,357:61-70. |
33 | WANG H, SIMUNOVIC S, MALEKI H, et al. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit[J]. Journal of Power Sources, 2016,306:424-430. |
34 | CHUNG S H, TANCOGNE-DEJEAN T, ZHU J, et al. Failure in lithium-ion batteries under transverse indentation loading[J]. Journal of Power Sources, 2018,389:148-159. |
35 | ZHU X, WANG H, WANG X, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions:An experimental study[J]. Journal of Power Sources, 2020,455:227939. |
36 | LI H, LIU B, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020,167(12):120501. |
37 | CAI W, WANG H, MALEKI H, et al. Experimental simulation of internal short circuit in Li-ion and Li-ion-polymer cells[J]. Journal of Power Sources, 2011,196(18):7779-7783. |
38 | LI H, ZHOU D, DU C, et al. Parametric study on the safety behavior of mechanically induced short circuit for lithium-ion pouch batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2020,18(2): |
39 | LIU B, YIN S, XU J. Integrated computation model of lithium-ion battery subject to nail penetration[J]. Applied Energy, 2016,183:278-289. |
40 | RAMADASS P, FANG W, ZHANG Z J. Study of internal short in a Li-ion cell I. test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014,248:769-776. |
41 | YAMAUCHI T, MIZUSHIMA K, SATOH Y, et al. Development of a simulator for both property and safety of a lithium secondary battery[J]. Journal of Power Sources, 2004,136(1):99-107. |
42 | FINEGAN D P, TJADEN B, HEENAN T M M, et al. Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. Journal of The Electrochemical Society, 2017,164(13):A3285-A3291. |
43 | HEENAN T M M, TAN C, HACK J, et al. Developments in X-ray tomography characterization for electrochemical devices[J]. Materials Today, 2019,31:69-85. |
44 | WANG L. Deformation and failure properties of lithium-ion battery under axial nail penetration[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2). |
45 | MAO B, CHEN H, CUI Z, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018,122:1103-1115. |
46 | MA T, CHEN L, LIU S, et al. Mechanics-morphologic coupling studies of commercialized lithium-ion batteries under nail penetration test[J]. Journal of Power Sources, 2019,437:226928. |
47 | HUANG S, DU X, RICHTER M, et al. Understanding Li-Ion cell internal short circuit and thermal runaway through small, slow and in situ sensing nail penetration[J]. Journal of the Electrochemical Society, 2020,167(9):90526. |
48 | YAMANAKA T, TAKAGISHI Y, TOZUKA Y, et al. Modeling lithium ion battery nail penetration tests and quantitative evaluation of the degree of combustion risk[J]. Journal of Power Sources, 2019,416:132-140. |
49 | WANG J, MEI W, CUI Z, et al. Investigation of the thermal performance in lithium-ion cells during polyformaldehyde nail penetration[J]. Journal of Thermal Analysis and Calorimetry, 2021,145(6):3255-3268. |
50 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015,6(1). |
51 | ZHU X, WANG H, ALLU S, et al. Investigation on capacity loss mechanisms of lithium-ion pouch cells under mechanical indentation conditions[J]. Journal of Power Sources, 2020,465:228314. |
52 | LI Ling,CHEN Xiaoping,HU Rufu. Aging mechanisms and thermal characteristics of commercial 18650 lithium-ion battery induced by minor mechanical deformation[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2). |
53 | JIA Y, LIU B, HONG Z, et al. Safety issues of defective lithium-ion batteries: identification and risk evaluation[J]. Journal of Materials Chemistry A, 2020,8(25):12472-12484. |
54 | CANNARELLA J, ARNOLD C B. Stress evolution and capacity fade in constrained lithium-ion pouch cells[J]. Journal of Power Sources, 2014,245:745-751. |
55 | WANG H, LEONARD D N, MEYER H M, et al. Microscopic analysis of copper current collectors and mechanisms of fragmentation under compressive forces[J]. Materials Today Energy, 2020,17:100479. |
56 | SAHRAEI E, GILAKI M, LYNCH W, et al. Cycling results of mechanically damaged li-ion batteries[C].2019 IEEE Electric Ship Technologies Symposium (ESTS), 2019. |
57 | LIU Y, XIA Y, ZHOU Q. Effect of low-temperature aging on the safety performance of lithium-ion pouch cells under mechanical abuse condition: a comprehensive experimental investigation[J]. Energy Storage Materials, 2021,40:268-281. |
58 | JI Y, CHEN X, WANG T, et al. Coupled effects of charge–discharge cycles and rates on the mechanical behavior of electrodes in lithium–ion batteries[J]. Journal of Energy Storage, 2020,30:101577. |
59 | SAHRAEI E, KAHN M, MEIER J, et al. Modelling of cracks developed in lithium-ion cells under mechanical loading[J]. RSC Advances, 2015,5(98):80369-80380. |
60 | BAI Y, WIERZBICKI T. Application of extended Mohr–Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010,161(1):1-20. |
61 | XU J, LIU B, WANG X, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies[J]. Applied Energy, 2016,172:180-189. |
62 | ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests[J]. Journal of Power Sources, 2015,298:309-321. |
63 | XU J, LIU B, WANG L, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing[J]. Engineering Failure Analysis, 2015,53:97-110. |
64 | LIU B, ZHAO H, YU H, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading[J]. Electrochimica Acta, 2017,256:172-184. |
65 | DOYLE M. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of The Electrochemical Society, 1993,140(6):1526. |
66 | KIM G, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007,170(2):476-489. |
67 | SUO Y, LIU J. Thermo‐mechanical coupling analysis of a cylindrical lithium‐ion battery with thermal radiation effect in generalized plane strain condition[J]. International Journal of Energy Research, 2021,45(2):1988-1998. |
68 | ZHU J, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018,378:153-168. |
69 | ZHANG C, XU J, CAO L, et al. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2017,357:126-137. |
70 | ZHU J, LI W, WIERZBICKI T, et al. Deformation and failure of lithium-ion batteries treated as a discrete layered structure[J]. International Journal of Plasticity, 2019,121:293-311. |
71 | ZHU L, XIA Y, LIU Y, et al. Extending a homogenized model for characterizing multidirectional jellyroll failure in prismatic lithium-ion batteries[J]. Energies, 2021,14(12):3444. |
72 | KERMANI G, KESHAVARZI M M, SAHRAEI E. Deformation of lithium-ion batteries under axial loading: analytical model and representative volume element[J]. Energy Reports, 2021,7:2849-2861. |
73 | LAI W, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions[J]. Journal of Power Sources, 2014,245:609-623. |
74 | LIAN J, KOCH M, LI W, et al. Mechanical deformation of lithium-ion pouch cells under in-plane loads-part II: computational modeling[J]. Journal of the Electrochemical Society, 2020,167(9):90556. |
75 | JIA Y, GAO X, MOUILLET J, et al. Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach[J]. Journal of Energy Storage, 2021,33:102090. |
[1] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[2] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[3] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[4] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[5] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[6] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[7] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
[8] | 王萍,弓清瑞,程泽,张吉昂. 基于AUKF的锂离子电池SOC估计方法[J]. 汽车工程, 2022, 44(7): 1080-1088. |
[9] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[10] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[11] | 马彦,李佳怡,马乾,陈明超. 基于迭代动态规划的动力电池组热管理优化策略[J]. 汽车工程, 2022, 44(5): 709-721. |
[12] | 孙涛,郑侠,郑岳久,卢宇芳,匡柯,韩雪冰. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
[13] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[14] | 蔡蔚,杨茂通,刘洋,李道会. SiC功率模块封装技术及展望[J]. 汽车工程, 2022, 44(4): 638-648. |
[15] | 王萍,彭香园,程泽,张吉昂. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3): 362-371. |
|