Automotive Engineering ›› 2021, Vol. 43 ›› Issue (4): 492-500.doi: 10.19562/j.chinasae.qcgc.2021.04.006
Previous Articles Next Articles
Received:
2020-08-28
Online:
2021-04-25
Published:
2021-04-23
Contact:
Yutao Luo
E-mail:ctytluo@scut.edu.cn
Yutao Luo,Han Qin. 3D Object Detection Method for Autonomous Vehicle Based on Sparse Color Point Cloud[J].Automotive Engineering, 2021, 43(4): 492-500.
1 | HIMMELSBACH M, MUELLER A, LÜTTEL T, et al. LIDAR⁃based 3D object perception[C]. Proceedings of 1st International Workshop on Cognition for Technical Systems,2008. |
2 | CHARLES R Q, SU H, KAICHUN M, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),IEEE Computer Society, 2017. |
3 | YANG B, LIANG M, URTASUN R. Hdnet: Exploiting HD maps for 3D object detection[C]. Conference on Robot Learning,PMLR, 2018. |
4 | ZHOU Y, TUZEL O. VoxelNet: end⁃to⁃end learning for point cloud based 3D object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018. |
5 | YAN Y, MAO Y, LI B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018,18(10): 3337. |
6 | LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. |
7 | CHEN X, MA H, WAN J, et al. Multi⁃view 3D object detection network for autonomous driving[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017. |
8 | LIANG M, YANG B, WANG S, et al. Deep continuous fusion for multi⁃sensor 3D object detection[C]. European Conference on Computer Vision, Springer, 2018. |
9 | KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018. |
10 | CHO H, SEO Y, KUMAR B V, et al. A multi⁃sensor fusion system for moving object detection and tracking in urban driving environments[C]. 2014 IEEE International Conference on Robotics and Automation (ICRA),IEEE, 2014. |
11 | CHAVEZ-GARCIA R O, AYCARD O. Multiple sensor fusion and classification for moving object detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,17(2): 525-534. |
12 | KU J, PON A D, WALSH S, et al. Improving 3D object detection for pedestrians with virtual multi⁃view synthesis orientation estimation[C]. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2019. |
13 | KU J, PON A D, WASLANDER S L. Monocular 3D object detection leveraging accurate proposals and shape reconstruction[C]. IEEE Computer Society, 2019. |
14 | VORA S, LANG A H, HELOU B, et al. PointPainting: sequential fusion for 3D object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. |
15 | FISHER B. "3x4Projection Matrix" from geometric framework for vision I [EB/OL]. (1997-04-16)[2021-03-02]. . |
16 | FISHER B. "Camera Calibration"from geometric framework for vision I[EB/OL]. (1997-04-16)[2021-03-02]. . |
17 | GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013,32(11): 1231-1237. |
18 | LIU W, ANGUELOV D, ERHAN D, et al. Ssd: single shot multibox detector[C]. European Conference on Computer Vision, Springer, 2016. |
19 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, 2015. PMLR. |
20 | NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]. Proceedings of the 27th International Conference on International Conference on Machine Learning, 2010. |
21 | EVERINGHAM M, Van GOOL L, WILLIAMS C K, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010,88(2): 303-338. |
22 | LIN T, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,2(42): 318-327. |
23 | CHEN X, KUNDU P K, ZHU Y, et al. 3D object proposals for accurate object class detection[C]. Advances in Neural Information Processing Systems, 2015: 424-432. |
24 | GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012. |
25 | YANG Z, SUN Y, LIU S, et al. STD: sparse⁃to⁃dense 3D object detector for point cloud[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, 2019. |
26 | YANG Z, SUN Y, LIU S, et al. IPOD: intensive point⁃based object detector for point cloud[J]. arXiv preprint, 2018: 1812. |
27 | QI C R, LIU W, WU C, et al. Frustum PointNets for 3D object detection from RGB-D data[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. |
28 | SHIN K, KWON Y P, TOMIZUKA M. RoarNet: a robust 3D object detection based on region approximation refinement[C]. 2019 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2019. |
[1] | Yanxin Wang,Haiyan Li,Shihai Cui,Lijuan He,Lü Wenle. Research on Prediction Model and Assessment Parameters of Head Injury for Child Occupants Based on BP Neural Network [J]. Automotive Engineering, 2024, 46(2): 329-336. |
[2] | Minghui Hu,Guangyao Zhu,Changhe Liu,Guofeng Tang. Joint Estimation of State of Charge for Lithium-Ion Battery with Kalman Filtering and Gated Recurrent Unit Neural Networks Considering Hysteresis Characteristics [J]. Automotive Engineering, 2023, 45(9): 1688-1701. |
[3] | Xin Guan,Zhaohui Zhong,Jun Zhan,Tenglong Xi,Hao Ye,Shenzhen Gao,Jian Cheng,Shihui Liao,Jun Cai. Vehicle Handling and Stability Test Type Recognition Method Based on Convolutional Neural Network [J]. Automotive Engineering, 2023, 45(9): 1765-1771. |
[4] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[5] | Guoqiang Chen,Zhengyi Shen,Li Sun,Mengfan Zhi,Tong Li. Intelligent Cockpit Perceptual Image Prediction Based on BP Neural Network Optimization Genetic Algorithm [J]. Automotive Engineering, 2023, 45(8): 1479-1488. |
[6] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[7] | Lei Zhang, Keren Guan, Xiaolin Ding, Pengyu Guo, Zhenpo Wang, Fengchun Sun. Tire-Road Friction Estimation Method Based on Image Recognition and Dynamics Fusion [J]. Automotive Engineering, 2023, 45(7): 1222-1234. |
[8] | Zhenfeng Pu, Liang Tang, Wenbin Shangguan, Weiwei Wang, Kaihong Jiang. Research on the Estimation of Vehicle Speed Under Low-Speed Conditions Based on Multi-sensor Information [J]. Automotive Engineering, 2023, 45(7): 1235-1243. |
[9] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[10] | Xia Zhao,Zhao Li,Rui Fu,Zhenzhen Ge,Chang Wang. Real-Time Detection of Distracted Driving Behavior Based on Deep Convolution-Tokens Dimensionality Reduction Optimized Visual Transformer Model [J]. Automotive Engineering, 2023, 45(6): 974-988. |
[11] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[12] | Wenguang Wu,Shuangyue Tian,Zhiyong Zhang,Bin Jin,Zenghua Qiu. Research on Surface Geometry Parameter Recognition and Model Reconstruction of Uneven Road [J]. Automotive Engineering, 2023, 45(2): 273-284. |
[13] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[14] | Zhicheng He,Leihao Du,Enlin Zhou,Gaofeng Qin,Jin Huang. CAN Bus Load Rate Optimization Based on Improved Continuous Hopfield Neural Network [J]. Automotive Engineering, 2023, 45(12): 2338-2347. |
[15] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |