1 |
GHAHREMANNEZHAD H, SHI H, LIU C, et al. Object detection in traffic videos: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 6780-6799.
|
2 |
AMJOUD A B, AMROUCH M. Object detection using deep learning, CNNs and vision transformers: a review[J]. IEEE Access, 2023, 11: 35479-35516.
|
3 |
HUANG G, SHEN A, HU Y, et al. Optimizing YOLOv5s object detection through knowledge distillation algorithm[J/OL]. Computer Science, arXiv preprint arXiv: , 2024.
|
4 |
GOU J, YU B, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.
|
5 |
YANG Z, LI Z, JIANG X, et al. Focal and global knowledge distillation for detectors[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA, IEEE Press, 2022: 4633-4642.
|
6 |
SHU C, LIU Y, GAO J, et al. Channel-wise knowledge distillation for dense prediction[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada, IEEE, 2021: 5291-5300.
|
7 |
YANG Z, LI Z, SHAO M, et al. Masked generative distillation[J/OL]. Computer Science, arXiv preprint arXiv: 2205.01529, 2022
|
8 |
YANG G, TANG Y, LI J, et al. AMD: adaptive masked distillation for object detection[C]. 2023 International Joint Conference on Neural Networks. Gold Coast, Australia, IEEE Press, 2023: 1-8.
|
9 |
YANG G, TANG Y, WU Z, et al. DMKD: improving feature-based knowledge distillation for object detection via dual masking augmentation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing. Seoul, Korea, Republic of, IEEE Press, 2024: 3330-3334.
|
10 |
DENG C, WANG M, LIU L, et al. Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 2021, 24: 1968-1979.
|
11 |
TERVEN J R, CÓRDOVA-ESPARZA D M, ROMERO-GONZÁLEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
|
12 |
WADDAR R, RATHOD V, NETRAVATI H, et al. A CNN-based stutter detection using MFCC features with binary cross-entropy loss function[C]. IEEE International Conference on Contemporary Computing and Communications. Bangalore, India, IEEE Press, 2024, 1: 1-6.
|
13 |
HUANG P, TIAN S, SU Y, et al. IA-CIOU: an improved IOU bounding box loss function for SAR ship target detection methods[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10569-10582.
|
14 |
YANG B, ZHANG X, ZHANG J, et al. EFLNet: enhancing feature learning network for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-11.
|
15 |
ZHOU W, WANG C, XIA J, et al. Monitoring-based traffic participant detection in urban mixed traffic: a novel dataset and a tailored detector[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 25(1): 189-202.
|
16 |
SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: an end-to-end framework for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15650-15664.
|
17 |
DAI X, CHEN Y, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA, IEEE Press, 2021: 7373-7382.
|
18 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J/OL]. Computer Science, arXiv preprint arXiv: , 2024.
|
19 |
WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J/OL]. Computer Science, arXiv preprint arXiv: , 2024.
|
20 |
KHANAM R, HUSSAIN M. YOLOv11: an overview of the key architectural enhancements[J/OL]. Computer Science, arXiv preprint arXiv: , 2024.
|
21 |
LIU S, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for detr[J/OL]. Computer Science, arXiv preprint arXiv: , 2022.
|
22 |
ZHANG H, LI F, LIU S, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[J/OL]. Computer Science, arXiv preprint arXiv: , 2022.
|
23 |
LV W, ZHAO Y, XU S, et al. DETRs beat YOLOs on real-time object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, IEEE Press, 2024: 16965-16974.
|
24 |
ZHANG Y, ZHU Y, LIU J, et al. An interpretability optimization method for deep learning networks based on Grad-CAM[J]. IEEE Internet of Things Journal, 2024, Accession number 20244517311551: 1-8.
|