Automotive Engineering ›› 2023, Vol. 45 ›› Issue (12): 2280-2290.doi: 10.19562/j.chinasae.qcgc.2023.12.010
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Linhui Li1,2,Xinliang Zhang1,Yifan Fu1,Jing Lian1,2(),Jiaxu Ma1
Received:
2023-04-22
Revised:
2023-05-25
Online:
2023-12-25
Published:
2023-12-21
Contact:
Jing Lian
E-mail:lianjingdlut@126.com
Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm[J].Automotive Engineering, 2023, 45(12): 2280-2290.
"
模型 | 训练集 | 测试集 |
---|---|---|
SS-PostFusion DS-PostFusion DD-PostFusion | M3FD(3358)(可见光+红外) | M3FD(842)(可见光+红外) |
YOLOv7(可见光) C-YOLOv7(可见光) TC-YOLOv7(可见光) | FLIR(10319)(可见光) | FLIR(3749)(可见光) RTTS(4322) BDD100k(5083/5571) M3FD(4200)(可见光) |
YOLOv7(红外) C-YOLOv7(红外) TC-YOLOv7(红外) | FLIR(10742)(红外) | FLIR(3749)(红外) M3FD(4200)(红外) |
YOLOv7(后融合) TC-YOLOv7(后融合) | FLIR(10319)(可见光) FLIR(10742)(红外) | M3FD(4200)(可见光+红外) |
"
模型 | AP/% | mAP@.5/% | Precision 提升/% | 检测 速度/fps | |||||
---|---|---|---|---|---|---|---|---|---|
Person | Car | Motorcycle | Bus | Train | Traffic light | ||||
YOLOv7(可见光) | 50.2 | 83.4 | 44.7 | 60.0 | 46.4 | 52.3 | 56.2 | 91 | |
TC-YOLOv7(可见光) | 52.4 | 85.5 | 49.4 | 67.1 | 44.3 | 46.4 | 57.5 | 80 | |
YOLOv7(红外) | 74.4 | 80.2 | 41.8 | 58.2 | 28.0 | 16.5 | 49.9 | 91 | |
TC-YOLOv7(红外) | 74.6 | 79.6 | 44.0 | 61.2 | 27.7 | 18.1 | 50.9 | 80 | |
YOLOv7(后融合) | 73.7 | 86.9 | 49.5 | 66.1 | 46.2 | 46.2 | 61.4 | 3.9/10.5 | 48 |
TC-YOLOv7(后融合) | 74.0 | 87.9 | 54.7 | 68.8 | 45.3 | 41.5 | 62.0 | 4.5/11.1 | 39 |
1 | LI L, ZHANG X, LIAN J, et al. Study on practical utility of image dehazing algorithms based on deep learning in computer vision scene understanding[C]. CAAI International Conference on Artificial Intelligence, 2023: 601-612. |
2 | MA W, WANG K, LI J, et al. Infrared and visible image fusion technology and application: a review[J]. Sensors, 2023, 23(2): 599. |
3 | ZOU Z, SHI Z, GUO Y, et al. Object detection in 20 years: a survey[C]. Proceedings of the IEEE, 2023. |
4 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
5 | GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448. |
6 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28. |
7 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |
8 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]. European Conference on Computer Vision. Springer, 2016: 21-37. |
9 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
10 | JOCHER G, STOKEN A, BOROVEC J, et al. YOLOv5[EB/OL]. http://doi.org/10.5281/zenodo.4154370. |
11 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023: 7464-7475. |
12 | GE Z, LIU S, WANG F, et al. Yolox: exceeding YOLO series in 2021[J]. arXiv preprint arXiv:, 2021. |
13 | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19. |
14 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
15 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017,30. |
16 | TELEDYNE F. FLIR thermal dataset for algorithm training[EB/OL]. https://adas-dataset-v2.flirconservator.com. |
17 | LI B, REN W, FU D, et al. Benchmarking single image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505. |
18 | YU F, CHEN H, WANG X, et al. Bdd100k: a diverse driving dataset for heterogeneous multitask learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2636-2645. |
19 | LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-5811. |
[1] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[2] | Lei Ma, Shunqing Yang, Huanhuan Wang, Jiachen Zhai, Jianao Xu. Lightweight Object Detection Algorithm Based on Image Saliency Feature Fusion [J]. Automotive Engineering, 2024, 46(1): 84-91. |
[3] | Yongtao Li,Chenxu Sun,Weiguang Zheng,Enyong Xu,Yufang Li,Shanchao Wang. Collision Warning Based on Fusion of Millimeter Wave Radar and Vision [J]. Automotive Engineering, 2023, 45(9): 1666-1676. |
[4] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[5] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[6] | Zhenfeng Pu, Liang Tang, Wenbin Shangguan, Weiwei Wang, Kaihong Jiang. Research on the Estimation of Vehicle Speed Under Low-Speed Conditions Based on Multi-sensor Information [J]. Automotive Engineering, 2023, 45(7): 1235-1243. |
[7] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[8] | Xia Zhao,Zhao Li,Rui Fu,Zhenzhen Ge,Chang Wang. Real-Time Detection of Distracted Driving Behavior Based on Deep Convolution-Tokens Dimensionality Reduction Optimized Visual Transformer Model [J]. Automotive Engineering, 2023, 45(6): 974-988. |
[9] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[10] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[11] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |
[12] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[13] | Jie Hu,Yuanjie Li,Hao Geng,Huangzheng Geng,Xiong Guo,Hongwei Yi. Construction of Vehicle Fault Knowledge Graph Based on Deep Learning [J]. Automotive Engineering, 2023, 45(1): 52-60. |
[14] | Jie Hu,Boyuan Xu,Zongquan Xiong,Minjie Chang,Di Guo,Lihao Xie. Cross-Domain Object Detection Algorithm Based on Multi-scale Mask Classification Domain Adaptive Network [J]. Automotive Engineering, 2022, 44(9): 1327-1338. |
[15] | Guihong Bi,Xu Xie,Zilong Cai,Zhao Luo,Chenpeng Chen,Xin Zhao. Capacity Estimation of Lithium-ion Battery Based on Deep Learning Under Dynamic Conditions [J]. Automotive Engineering, 2022, 44(6): 868-878. |
|