Automotive Engineering ›› 2025, Vol. 47 ›› Issue (6): 1155-1168.doi: 10.19562/j.chinasae.qcgc.2025.06.014
Qinglu Ma1(
),Qiuwei Jian2,Meiqiang Li1,Zheng Zou3
Received:2024-08-07
Revised:2024-12-14
Online:2025-06-25
Published:2025-06-20
Contact:
Qinglu Ma
E-mail:qlm@cqjtu.edu.cn
Qinglu Ma,Qiuwei Jian,Meiqiang Li,Zheng Zou. Lane-Level LiDAR-Visual Fusion SLAM in Autonomous Driving Environment[J].Automotive Engineering, 2025, 47(6): 1155-1168.
"
| 误差 | 方法 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| ORB-SLAM2 | LeGO-LOAM | Fast-LIVO | TVL-SLAM | LLV-SLAM | ||||||
| APE | RPE | APE | RPE | APE | RPE | APE | RPE | APE | RPE | |
| Max | 11.050 2 | 0.581 0 | 6.682 2 | 0.596 5 | 5.623 05 | 0.341 02 | 4.802 36 | 0.241 07 | 4.609 5 | 0.190 5 |
| Mean | 6.241 4 | 0.201 5 | 3.491 1 | 0.127 3 | 2.521 08 | 0.051 5 | 2.360 24 | 0.031 28 | 2.274 6 | 0.028 6 |
| Med | 6.477 9 | 0.236 3 | 3.009 7 | 0.074 3 | 2.634 16 | 0.054 21 | 2.486 41 | 0.036 81 | 2.384 9 | 0.023 5 |
| Min | 1.955 1 | 0.008 9 | 1.245 9 | 0.048 1 | 0.569 81 | 0.007 65 | 0.095 46 | 0.006 97 | 0.103 6 | 0.006 7 |
| RMSE | 7.025 1 | 0.225 9 | 3.889 3 | 0.138 3 | 3.145 92 | 0.090 36 | 2.847 56 | 0.064 25 | 2.403 9 | 0.031 9 |
| SD | 6.135 5 | 0.210 1 | 3.594 0 | 0.113 1 | 2.945 81 | 0.083 12 | 2.546 37 | 0.051 46 | 2.286 3 | 0.026 1 |
"
| 降采样值 | 方法 | x/cm | y/cm | z/cm | Pitch/rad | Yam/rad | Roll/rad |
|---|---|---|---|---|---|---|---|
| 1.0 | LeGO-LOAM | 3.854 | 3.787 | 4.600 | 0.207 | 0.261 | 0.281 |
| Fast-LIVO | 3.253 | 2.781 | 3.992 | 0.122 | 0.128 | 0.169 | |
| TVL-SLAM | 3.014 | 2.745 | 3.916 | 0.112 | 0.114 | 0.141 | |
| LLV-SLAM | 2.932 | 2.570 | 3.850 | 0.095 | 0.104 | 0.133 | |
| 1.5 | LeGO-LOAM | 2.390 | 2.694 | 3.312 | 0.246 | 0.224 | 0.262 |
| Fast-LIVO | 2.187 | 2.213 | 3.218 | 0.194 | 0.191 | 0.208 | |
| TVL-SLAM | 2.149 | 2.108 | 3.177 | 0.189 | 0.189 | 0.198 | |
| LLV-SLAM | 2.116 | 1.932 | 3.133 | 0.184 | 0.183 | 0.196 | |
| 2.0 | LeGO-LOAM | 4.625 | 5.512 | 6.581 | 0.154 | 0.133 | 0.172 |
| Fast-LIVO | 2.846 | 2.761 | 2.982 | 0.093 | 0.102 | 0.098 | |
| TVL-SLAM | 2.617 | 2.515 | 2.844 | 0.062 | 0.071 | 0.074 | |
| LLV-SLAM | 2.416 | 2.316 | 2.698 | 0.043 | 0.054 | 0.055 | |
| 2.5 | LeGO-LOAM | 1.783 | 1.239 | 2.323 | 0.127 | 0.131 | 0.132 |
| Fast-LIVO | 1.089 | 1.112 | 2.057 | 0.118 | 0.121 | 0.125 | |
| TVL-SLAM | 0.973 | 0.991 | 1.991 | 0.114 | 0.117 | 0.119 | |
| LLV-SLAM | 0.796 | 0.815 | 1.965 | 0.112 | 0.115 | 0.116 |
| 1 | 蔡英凤,陆子恒,李祎承,等.基于多传感器融合的紧耦合SLAM系统[J].汽车工程,2022,44(3):350-361. |
| CAI Y F, LU Z H, LI Y C, et al. Tightly coupled SLAM system based on multi-sensor fusion[J]. Automotive Engineering, 2022,44(3):350-361. | |
| 2 | 刘庆运,杨华阳,刘涛,等.基于激光雷达与深度相机融合的SLAM算法[J].农业机械学报,2023,54(11):29-38. |
| LIU Q Y, YANG H Y, LIU T, et al. SLAM algorithm based on the fusion of lidar and depth camera [J]. Journal of Agricultural Machinery, 2023, 54(11): 29-38. | |
| 3 | SHIN Y, PARK Y S, KIM A. DVL-SLAM: sparse depth enhanced direct visual-LiDAR SLAM[J]. Auto. Robots, 2020, 44(2): 115-130. |
| 4 | 李振拯,丁恩杰,王戈琛.基于LiDAR-IMU松耦合的同时定位与建图方法[J].传感器与微系统,2022,41(4):36-39,43. |
| LI Z Z, DING E J, WANG Y C. Simultaneous localization and mapping method based on LiDAR-IMU loose coupling [J]. Sensors and Microsystems, 2022,41(4):36-39,43. | |
| 5 | SUN L, DING G Q, QIU Y, et al. Transformer-based LiDAR-inertial fusion odometry estimation[J] IEEE Sensors Journal,2023,23(18): 22064-22079, |
| 6 | LABBE M, MICHAUD F. Appearance-based loop closure detection for online large-scale and long-term operation[J]. IEEE Transactions on Robotics, 2023,29(3): 734-745. |
| 7 | 任明宇,陈万米,张圆圆.融合激光和视觉信息的机器人SLAM方法研究[J].电子测量技术,2019,42(13): 92-97. |
| REN M Y, CHEN W M, ZHANG Y Y. Research on robot SLAM method combining laser and visual information [J]. Electronic Measurement Technology, 2019, 42(13):92-97. | |
| 8 | 赵良玉,金瑞,朱叶青,等.基于点线特征融合的双目惯性SLAM算法[J].航空学报,2022,43(3):363-377. |
| ZHAO L Y, JIN R, ZHU Y Q, et al. Binocular inertial SLAM algorithm based on point-line feature fusion [J]. Journal of Aeronautics, 2022,43(3):363-377. | |
| 9 | 路春晓,钟焕,刘威,等.复杂地形环境下的多传感器融合SLAM技术[J].机器人:1-11[2024-07-05]. |
| LU C X, ZHONG H, LIU W, et al. Multi-sensor fusion SLAM technology in complex terrain environment [J]. Robot:1-11[2024-07-05] | |
| 10 | YIN J, LUO D T, YAN F, et al. A novel lidar-assisted monocular visual SLAM framework for mobile robots in outdoor environments[J]. IEEE Transactions on Instrumentation and Measurement, 2022,71(8503911):1-11. |
| 11 | 陈绵书,于录录,李晓妮,等.基于均匀ORB特征的回环检测算法[J].吉林大学学报(工学版),2023,53(9):2666-2675. |
| CHEN M S, YU L L, LI X N, et al. Loop closure detection algorithm based on uniform ORB feature [J]. Journal of Jilin University ( Engineering Edition ), 2023,53(9):2666-2675. | |
| 12 | 李荣华,祁宇峰,谢辉,等.面向未知环境的紧耦合激光SLAM方法[J].红外与激光工程,2023,52(9):135-144. |
| LI R H, QI Y F, XIE H, et al. Tightly coupled laser SLAM method for unknown environment [J]. Infrared and Laser Engineering, 2023, 52 (9):135-144. | |
| 13 | 李少伟,钟勇,杨华山,等.融合激光雷达和RGB-D相机建图[J].福建理工大学学报,2023,21(6):551-557. |
| LI S W, ZHONG Y, YANG H S, et al. Fusion of laser radar and RGB-D camera mapping [J]. Journal of Fujian University of Science and Technology, 2023, 21(6):551-557. | |
| 14 | 刘鸿勋,王伟.双目相机和激光雷达的融合SLAM研究[J].南京师范大学学报(工程技术版),2021,21(1):64-71. |
| LIU H X, WANG W. Research on fusion SLAM of binocular camera and lidar [J]. Journal of Nanjing Normal University (Engineering Technology Edition), 2021, 21(1):64-71. | |
| 15 | ZHAO H R, QIAO X Q, TAN Z J, et al. Loosely coupled visual-inertial odometry based on spatial-temporal two-stream convolution and long short-term memory networks[J]. Chinese Journal of Computers, 2022,45(8): 1674-1686. |
| 16 | 王乐兵,王挺,姜祎,等.基于地面约束的改进A-LOAM算法[J].计算机仿真,2023,40(5):462-466. |
| WANG L B, WANG T, JIANG Y, et al. Improved A-LOAM algorithm based on ground constraint[J]. Computer Simulation, 2023,40(5): 462-466. | |
| 17 | CHOU C C, CHOU C F. Efficient and accurate tightly-coupled visual-lidar SLAM[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(9):14509-14523. |
| 18 | LI R, ZHANG X, ZHANG S, et al. BA-LIOM: tightly coupled laser-inertial odometry and mapping with bundle adjustment[J]. Robot, 2024,42(3): 684-700. |
| 19 | WANG K, MA S, REN F, et al. SBAS: salient bundle adjustment for visual SLAM[J], IEEE Transactions on Instrumentation and Measurement,2021,70(5014709):1-9. |
| 20 | YUAN Z K, WANG Q J, ZHENG J, et al. SDV-LOAM: semi-direct visual-LiDAR odometry and mapping[J].IEEE Transactions on Pattern Analysis and Machine Intelligenc, 2023,45(9):11203-11220. |
| 21 | HAN Y, YANG X, PU T, et al. Fine-grained recognition for oriented ship against complex scenes in optical remote sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 6(4): 5612-5633. |
| 22 | ZHANG J M, CHEN S, XUE Q Y, et al. LeGO-LOAM-FN: an improved simultaneous localization and mapping method fusing LeGO-LOAM, faster_GICP and NDT in complex orchard environments[J]. Sensors, 2024, 24(2):551. |
| 23 | LIU A D, ZHANG B X, CUI Q, et al. A dynamic fusion path planning algorithm for mobile robots incorporating improved IB-RRT and deep reinforcement learning[J]. High Technology Letters,2023,29(4):365-376. |
| 24 | HUANG L, ZHU Z, YUN J, et al. Semantic loopback detection method based on instance segmentation and visual SLAM in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems,2024, 25(3): 3118-3127. |
| 25 | HE X, PAN S, GAO W, et al. LiDAR-Inertial-GNSS fusion positioning system in urban environment: local accurate registration and global drift-free[J]. Remote Sensing, 2022, 14(9): 2104-2115. |
| [1] | Mingchen Wang,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. MSF-Diffuser: A Multi-sensor Adaptive Fusion Autonomous Driving Method Based on Diffusion Model Under BEV [J]. Automotive Engineering, 2025, 47(6): 1122-1132. |
| [2] | Lingyun Zhu,Haiyang Wang. Autonomous Vehicle Object Detection by LiDAR Point Cloud Feature Completion in Snowfall Scenarios [J]. Automotive Engineering, 2025, 47(6): 1133-1143. |
| [3] | Chenyu Liu,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Camera and Radar Fusion for Autonomous Driving Scenarios [J]. Automotive Engineering, 2025, 47(5): 829-838. |
| [4] | Qirui Qin,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Real-Time Instance Segmentation Algorithm for Autonomous Driving Based on Instance Activation Maps [J]. Automotive Engineering, 2025, 47(4): 614-624. |
| [5] | Jinhui Suo, Xiaowei Wang, Peiwen Jiang, Chi Ding, Ming Gao, Yougang Bian. Domain Adaptive Visual Object Detection for Autonomous Driving Based on Multi-granularity Relation Reasoning [J]. Automotive Engineering, 2025, 47(2): 201-210. |
| [6] | Jiangkun Li,Ruixue Zong,Weiwen Deng,Ying Wang,Juan Ding. Directed Graph-Based Method for Evaluating Similarity in Urban Intersection Scenarios [J]. Automotive Engineering, 2025, 47(1): 23-34. |
| [7] | Daofei Li,Hao Pan. Application of Scenario Complexity Evaluation in Trajectory Prediction and Automated Driving Decision-Making [J]. Automotive Engineering, 2024, 46(9): 1556-1563. |
| [8] | Hai Wang,Jianguo Li,Yingfeng Cai,Long Chen. A LiDAR-Based Dynamic Driving Scene Multi-task Segmentation Network [J]. Automotive Engineering, 2024, 46(9): 1608-1616. |
| [9] | Jianan Zhang,Zhaozheng Hu,Jie Meng,Huahua Hu,Jie Zuo. Distributed Simulation Platform Architecture and Application of Autonomous Driving for Vehicle-Road-Map Collaboration [J]. Automotive Engineering, 2024, 46(8): 1335-1345. |
| [10] | Le Tao,Hai Wang,Yingfeng Cai,Long Chen. Multi-object Detection Algorithm Based on Point Cloud for Autonomous Driving Scenarios [J]. Automotive Engineering, 2024, 46(7): 1208-1218. |
| [11] | Linhui Li,Yifan Fu,Ting Wang,Xuecheng Wang,Jing Lian. Trajectory Prediction Method Enhanced by Self-supervised Pretraining [J]. Automotive Engineering, 2024, 46(7): 1219-1227. |
| [12] | Xiaolin Fan,Xudong Zhang,Yuan Zou,Xin Yin,Yingqun Liu. A Mapping and Planning Method Based on Simplified Visibility Graph [J]. Automotive Engineering, 2024, 46(7): 1249-1258. |
| [13] | Hai Wang,Yuxuan Ding,Tong Luo,Meng Qiu,Yingfeng Cai,Long Chen. A Multi-class Multi-target Tracking Algorithm Combining Motion Speed and Appearance Features in Driving Scenarios [J]. Automotive Engineering, 2024, 46(6): 956-964. |
| [14] | Jing Huang,Xiangzhen Liu,Xiaoyang Deng,Ran Chen. Research on Intelligent Vehicle Trajectory Planning Based on Multimodal Trajectory Prediction [J]. Automotive Engineering, 2024, 46(6): 965-974. |
| [15] | Jiqing Chen,Yuxiang Che,Xiaoqiang Tian,Fengchong Lan,Yunjiao Zhou. Research on Real-Time Visual SLAM Method Based on 3D Multi-Object Tracking in Dynamic Scenes [J]. Automotive Engineering, 2024, 46(5): 776-783. |
|
||