[1] 贾继德,张玲玲,曾锐利,等.变速箱齿轮磨损故障的极坐标角频表示与诊断[J].农业工程学报,2012,28(22):58-62. [2] 周士帅,窦东阳,薛斌.基于LMD和MED的滚动轴承故障特征提取方法[J].农业工程学报,2016,32(23):70-76. [3] 贾继德.汽车故障诊断中的信号处理方法[M].北京:化学工业出版社,2015. [4] 程军圣,杨怡,杨宇.局部特征尺度分解方法及其在齿轮故障诊断中的应用[J].机械工程学报,2012,48(9):64-71. [5] HUANG N E, SHEN Zheng, LONG S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annu. Rev. Fluid Mech.,1999,31:417-457. [6] RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing,2007,21(6):2607-2615. [7] RAI V K, MOHANTY A R. Bearing fault diagnosis fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing,2007,21(6):2607-2615. [8] 周义,李鸿光.快速自适应经验模态分解方法的基本原理及其性能评估[J].振动与冲击,2016,35(3):14-19. [9] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(1):1-41. [10] 吴小涛,杨锰,袁晓辉,等.基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断[J].振动与冲击,2015,34(2):38-44. [11] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]. Acoustics: 2011 IEEE International Conference on Speech and Signal Processing (ICASSP),2011:4144-4147. [12] SMITH J S. The local mean decomposition and its application to EEG percept ion data[J]. Journal of the Royal Society Interface,2005,2(5):443-454. [13] 程军圣,郑近德,杨宇.一种新的非平稳信号分析方法—局部特征尺度分解法[J].振动工程学报,2012,25(2):215-220. [14] FREI M G, OSORIO I. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proc. Royal Soc. A,2007,463:321-342. [15] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Proce-ssing,2013,62(3):531-544. [16] 唐贵基,王晓龙.变分模态分解方法在滚动轴承早期故障诊断中的应用[J].振动工程学报,2016,29(4):638-648. [17] ZHAO C, FENG Z P. Application of multi-domain sparse features for fault identification of planetary gearbox[J]. Measurement,2017,104:169-179. [18] AN X L, TANG Y J. Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine[J]. Transactions of the Institute of Measurement and Control,2017,39(7):1000-1006. [19] AN X L, TANG Y J. Denoising of hydropower unit vibration signal based on variational mode decomposition and approximate entropy[J]. Transactions of the Institute of Measurement and Control,2016,38(3):282-292. [20] LI Z P, CHEN J L, ZI Y Y. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive[J]. Mechanical Systems and Signal Processing,2017,85:512-529. [21] 唐贵基,王晓龙.IVMD融合奇异值差分谱的滚动轴承早期故障诊断[J].振动、测试与诊断,2016,36(4):700-707. [22] 赵磊,朱永利,高艳丰,等.基于变分模态分解和小波分析的变压器局部放电去噪研究[J].电测与仪表,2016,53(11):13-18. [23] 贾继德,吴春志,贾翔宇,等.一种适用于发动机振动信号的时频分析方法[J].汽车工程,2017,39(1):97-101. [24] 马增强,李亚超,刘政,等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击,2016,35(13):134-139. |