汽车工程 ›› 2018, Vol. 40 ›› Issue (11): 1324-1329.doi: 10.19562/j.chinasae.qcgc.2018.011.011

• • 上一篇    下一篇

车辆起步工况驾驶性品质评价方法研究*

黄伟1, 刘海江1, 李敏1, 童荣辉2, 周雷1   

  1. 1.同济大学机械与能源工程学院,上海 201804;
    2.上海汽车集团股份有限公司,上海 200041
  • 收稿日期:2017-10-25 出版日期:2018-11-25 发布日期:2018-11-25
  • 通讯作者: 刘海江,教授,博士生导师,E-mail:lhj@tongji.edu.cn
  • 基金资助:
    中国汽车产业创新发展联合基金(U1764259)、上海汽车工业科技发展基金(1517)和上海市科学技术委员会(15111103402)资助。

A Research on Evaluation Method for Vehicle Drivability Quality in Start Condition

Huang Wei1, Liu Haijiang1, Li Min1, Tong Ronghui2, Zhou Lei1   

  1. 1.School of Mechanical Engineering, Tongji University, Shanghai 201804;
    2.Shanghai Automotive Group Co., Ltd., Shanghai 200041
  • Received:2017-10-25 Online:2018-11-25 Published:2018-11-25

摘要: 为解决在车辆驾驶性品质评价中主观评价方法的评价结果稳定性差的问题,分析了起步控制机理,确定了起步工况驾驶性品质的评价指标;接着在建立起步工况驾驶性品质评价体系基础上,提出了基于模糊神经网络的起步工况驾驶性品质评价方法;最后对已训练好的驾驶性品质评价模型进行验证。结果表明,由评价模型预测的每辆车的评分与主观评价人员主观评分误差在1分以内,不同起步意图的预测评分合格率达到90%以上,主观评分和预测评分的相关系数达0.82以上,表明该评价模型能实现驾驶性品质的准确评价。

关键词: 起步工况, 驾驶性品质, 模糊神经网络, 评价

Abstract: In order to solve the problem of poor stability of the results of subjective evaluation in vehicle drivability quality evaluation, the start control mechanism is analyzed, the evaluation indicators for drivability quality in start condition are determined. Then the drivability quality evaluation system for start condition is set up and a drivability quality evaluation scheme for start condition is proposed based on fuzzy neural network. Finally the trained evaluation model for drivability quality is validated and the results show that the difference between the score of each vehicle predicted by evaluation model and that of subjective evaluation is within one point, the acceptance rate of prediction scores for different start intentions is up to 90%, and the correlation coefficient between subjective score and predictive score reaches above 0.82, indicating that the evaluation model proposed can fulfill accurate evaluation of drivability quality

Key words: start condition, drivability quality, fuzzy neural network, evaluation