汽车工程 ›› 2020, Vol. 42 ›› Issue (11): 1473-1481.doi: 10.19562/j.chinasae.qcgc.2020.11.004

• • 上一篇    下一篇

机器人驾驶车辆深度强化学习换挡策略*

周楠, 陈刚   

  1. 南京理工大学机械工程学院,南京 210094
  • 收稿日期:2018-12-18 出版日期:2020-11-25 发布日期:2021-01-25
  • 通讯作者: 陈刚,副教授,硕士生导师,E-mail:gang0418@163.com
  • 基金资助:
    *国家自然科学基金(51675281)、江苏省六大人才高峰计划项目(2015-JXQC-003)、中央高校基本科研业务费专项资金项目(30918011101)和江苏省研究生科研与实践创新计划项目(SJCX18_0146)资助。

Gearshifting Strategy for Robot-driven Vehicles Based on Deep Reinforcement Learning

Zhou Nan, Chen Gang   

  1. School of Mechanical Engineering, Nanjing University of Science and Technology,Nanjing 210094
  • Received:2018-12-18 Online:2020-11-25 Published:2021-01-25

摘要: 为提高机器人驾驶车辆的动力性能,提出了一种基于深度神经网络强化学习的机器人驾驶车辆偏向动力性的换挡策略。首先建立了车辆纵向动力学模型、驾驶机器人运动学模型、用马尔可夫过程描述的机器人驾驶车辆换挡策略强化学习模型,并以车速、加速度和油门开度为状态变量、挡位为动作变量,设计了状态空间、动作空间和奖惩机制。然后通过深度神经网络强化学习算法求解了机器人驾驶车辆动力性换挡策略。最后对比本文中提出策略与其他换挡策略的仿真与试验结果,验证了提出策略的有效性。

关键词: 驾驶机器人, 换挡策略, 深度强化学习, 神经网络

Abstract: In order to improve the power performance of the robot-driven vehicle, a gearshifting strategy for robot-driven vehicles in favour of power performanceis proposed based on deep neural network reinforcement learning. Firstly the vehicle longitudinal dynamics model, the kinematics model of the robot driver and the reinforcement learning model of the gearshifting strategy for the robot-driven vehicles described with Markov process are constructed, and the state space, the action space and the reward and punishment mechanism are designed with the vehicle speed, acceleration and throttle opening as the state variables and the gear position as the action variable. Then the gearshifting strategy for the robot-driven vehicles in favour of power performance is solved by using deep neural network reinforcement learning algorithm. The comparison between the simulation and test results with the strategy proposed in this paper and those with other strategyie verifies the effectiveness of the proposed strategy

Key words: robot driver, gearshifting strategy, deep reinforcement learning, neural network