1 |
范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28: 1152-1164.
|
|
FAN Lili, ZHAO Hongwei, ZHAO Haoyu, et al. Survey of target detection based ondeep convolutional neural networks[J]. Optics and Precision Engineering, 2020,28: 1152-1164.
|
2 |
王海, 蔡柏湘, 蔡英凤, 等. 基于语义分割网络的路面积水与湿滑区域检测[J]. 汽车工程, 2021, 43(4): 485-491.
|
|
WANG Hai, CAI Baixiang, CAI Yingfeng, et al. Detection of water⁃covered and wet areas on road pavement based on semantic segmentation network[J]. Automotive Engineering, 2021, 43(4): 485-491.
|
3 |
WONG K, WANG S, REN M, et al. Identifying unknown instances for autonomous driving[C]. Conference on Robot Learning. PMLR, 2020: 384-393.
|
4 |
DU X, WANG Z, CAI M, et al. VOS: learning what you don't know by virtual outlier synthesis[J]. arXiv preprint arXiv:, 2022.
|
5 |
WANG H, CHEN Y, CAI Y, et al. SFNet-N: an improved SFNet algorithm for semantic segmentation of low-light autonomous driving road scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21405-21417.
|
6 |
KENDALL A, BADRINARAYANAN V, CIPOLLA R. Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[J]. arXiv preprint arXiv:, 2015.
|
7 |
GRCIC M, BEVANDIC P, KALAFATIC Z, et al. Dense anomaly detection by robust learning on synthetic negative data[J]. arXiv preprint arXiv:, 2021.
|
8 |
OHGUSHI T, HORIGUCHI K, YAMANAKA M. Road obstacle detection method based on an autoencoder with semantic segmentation[C]. Proceedings of the Asian Conference on Computer Vision, 2020.
|
9 |
VOJIR T, ŠIPKA T, ALJUNDI R, et al. Road anomaly detection by partial image reconstruction with segmentation coupling[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 15651-15660.
|
10 |
YU F, CHEN H, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2636-2645.
|
11 |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2446-2454.
|
12 |
ZHANG Y, KANG B, HOOI B, et al. Deep long-tailed learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
|
13 |
CHAN R, ROTTMANN M, GOTTSCHALK H. Entropy maximization and meta classification for out-of-distribution detection in semantic segmentation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 5128-5137.
|
14 |
BAUR C, WIESTLER B, ALBARQOUNI S, et al. Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[C]. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part I 4. Springer International Publishing, 2019: 161-169.
|
15 |
BREITENSTEIN J, TERMÖHLEN J A, LIPINSKI D, et al. Corner cases for visual perception in automated driving: some guidance on detection approaches[J]. arXiv preprint arXiv:, 2021.
|
16 |
LI B, YAO Y, TAN J, et al. Equalized focal loss for dense long-tailed object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6990-6999.
|
17 |
WANG T, ZHU Y, ZHAO C, et al. Adaptive class suppression loss for long-tail object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3103-3112.
|
18 |
CONTRIBUTORS M M S. MMSegmentation: openMMLab semantic segmentation toolbox and benchmark[EB/OL]. http://github.com/open-mmlab/mmsegmentation,2020.
|
19 |
HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]. Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV 14. Springer International Publishing, 2016: 630-645.
|
20 |
WANG C, DU P, WU H, et al. A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net[J]. Computers and Electronics in Agriculture, 2021, 189: 106373.
|
21 |
FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
|
22 |
MOORE T, STOUCH D. A generalized extended Kalman filter implementation for the robot operating system[C]. Intelligent Autonomous Systems 13: Proceedings of the 13th International Conference IAS-13. Springer International Publishing, 2016: 335-348.
|
23 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
|
24 |
WOO S, DEBNATH S, HU R, et al. Convnext v2: co-designing and scaling convnets with masked autoencoders[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 16133-16142.
|
25 |
GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv preprint arXiv:, 2021.
|
26 |
BIFFI L J, MITISHITA E, LIESENBERG V, et al. ATSS deep learning-based approach to detect apple fruits[J]. Remote Sensing, 2020, 13(1): 54.
|
27 |
SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14454-14463.
|
28 |
GUPTA A, NARAYAN S, JOSEPH K J, et al. OW-DETR: open-world detection transformer[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 9235-9244.
|
29 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing, 2014: 740-755.
|
30 |
CHEN K, WANG J, PANG J, et al. MMDetection: open mmlab detection toolbox and bench mark[J]. arXiv preprint arXiv:, 2019.
|
31 |
LI K, CHEN K, WANG H, et al. CODA: a real-world road corner case dataset for object detection in autonomous driving[C]. European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 406-423.
|
32 |
ZHANG H, CHANG H, MA B, et al. Cascade RetinaNet: maintaining consistency for single-stage object detection[J]. arXiv preprint arXiv:, 2019.
|
33 |
GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
|