1 |
HOSS M, SCHOLTES M, ECKSTEIN L. A review of testing object-based environment perception for safe automated driving[J]. Automotive Innovation, 2022, 5(3): 223-250.
|
2 |
徐国艳, 牛欢, 郭宸阳, 等. 基于三维激光点云的目标识别与跟踪研究[J]. 汽车工程, 2020, 42(1): 38-46.
|
|
XU Guoyan, NIU Huan, GUO Chenyang, et al. Research on target recognition and tracking based on 3D laser point cloud[J]. Automotive Engineering, 2020, 42(1): 38-46.
|
3 |
SUN X, JIN L, HE Y, et al. SimoSet: a 3D object detection dataset collected from vehicle hybrid solid-state LiDAR[J]. Electronics, 2023, 12(11): 2424.
|
4 |
ZHOU Y, TUZEL O. Voxelnet: end-to-end learning for point cloud based 3D object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
|
5 |
YAN Y, MAO Y, LI B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
|
6 |
LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705.
|
7 |
SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.
|
8 |
YIN T, ZHOU X, KRAHENBUHL P. Center-based 3D object detection and tracking[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 11784-11793.
|
9 |
HE C, ZENG H, HUANG J, et al. Structure aware single-stage 3D object detection from point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11873-11882.
|
10 |
FAN L, WANG F, WANG N, et al. Fully sparse 3D object detection[J]. Advances in Neural Information Processing Systems, 2022, 35: 351-363.
|
11 |
CHEN Y, LIU J, ZHANG X, et al. VoxelNeXt: fully sparse VoxelNet for 3D object detection and tracking[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21674-21683.
|
12 |
LIANG A, ZHANG H, HUA H, et al. SPSNet: boosting 3D point-based object detectors with stable point sampling[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106807.
|
13 |
QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
|
14 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
15 |
QI C R, LITANY O, HE K, et al. Deep hough voting for 3D object detection in point clouds[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9277-9286.
|
16 |
YANG Z, SUN Y, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11040-11048.
|
17 |
ZHANG Y, HU Q, XU G, et al. Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 18953-18962.
|
18 |
HE Y, JIN L, GUO B, et al. Density-based road segmentation algorithm for point cloud collected by roadside LiDAR[J]. Automotive Innovation, 2023, 6(1): 116-130.
|
19 |
ZHANG W, QI J, WAN P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6): 501.
|
20 |
QIU S, ANWAR S, BARNES N. PnP-3D: a plug-and-play for 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 45(1): 1312-1319.
|
21 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
|
22 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
|
23 |
SCHINAGL D, KRISPEL G, POSSEGGER H, et al. OccAM's laser: occlusion-based attribution maps for 3D object detectors on LiDAR data[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1141-1150.
|
24 |
SHI S, WANG X, LI H. PointrCNN: 3D object proposal generation and detection from point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779.
|
25 |
SHI W, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1711-1719.
|
26 |
LIU Z, ZHAO X, HUANG T, et al. TANet: robust 3D object detection from point clouds with triple attention[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11677-11684.
|
27 |
SHI S, WANG Z, WANG X, et al. Part-A 2 Net: 3D part-aware and aggregation neural network for object detection from point cloud[J]. arXiv preprint arXiv:, 2019.
|