汽车工程 ›› 2024, Vol. 46 ›› Issue (6): 1096-1103.doi: 10.19562/j.chinasae.qcgc.2024.06.016

• • 上一篇    下一篇

考虑多维非线性扰动的电子助力制动系统自适应压力控制

朱冰1,唐衍鹏1,张东波2,赵健1,陈志成1()   

  1. 1.吉林大学,汽车底盘集成与仿生全国重点实验室,长春  130000
    2.中国第一汽车集团有限公司,长春  130000
  • 收稿日期:2023-11-28 修回日期:2024-01-16 出版日期:2024-06-25 发布日期:2024-06-19
  • 通讯作者: 陈志成 E-mail:chenzhicheng@jlu.edu.cn
  • 基金资助:
    国家自然科学基金(52302471);长沙市“揭榜挂帅”重大科技(kq2207008);吉林省重大科技专项项目(20220301009GX)

Adaptive Pressure Control for Electronic Boost Brake System Considering Multi-dimensional Nonlinear Disturbances

Bing Zhu1,Yanpeng Tang1,Dongbo Zhang2,Jian Zhao1,Zhicheng Chen1()   

  1. 1.Jilin University,State Key Laboratory of Automotive Simulation and Control,Changchun  130000
    2.China FAW Group Corporation,Changchun  130000
  • Received:2023-11-28 Revised:2024-01-16 Online:2024-06-25 Published:2024-06-19
  • Contact: Zhicheng Chen E-mail:chenzhicheng@jlu.edu.cn

摘要:

针对电子助力制动系统(EBBS)面临的机-电-液多维非线性扰动问题,提出了一种自适应压力控制策略。外层液压控制器引入自适应径向基函数神经网络和鲁棒滑模理论克服液压时变不确定性,中间层位置控制器采用Karnopp摩擦前馈补偿和滑模控制应对传动机构非线性摩擦阻碍,内层电流控制器通过李雅普诺夫理论解决电机电磁特性耦合问题。仿真和硬件在环试验结果表明,设计的压力控制策略能够在多种工况中将EBBS主动制动稳态压力跟随误差维持在0.15 MPa之内。

关键词: 车辆工程, 电子助力制动系统, 多维非线性扰动, 自适应压力控制, 硬件在环

Abstract:

In order to solve the multi-dimensional nonlinear disturbances of the electronic boost brake system in terms of mechanics, electronics and hydraulics, in this paper an adaptive pressure control strategy is proposed. The outer hydraulic controller incorporates adaptive radial basis function neural networks and robust sliding mode theory to overcome hydraulic time-varying uncertainties. The intermediate layer controller adopts Karnopp friction feedforward compensation and sliding mode control to deal with the nonlinear friction hindrance of the transmission mechanism. The inner layer current controller solves the problem of electromagnetic coupling of the motor using Lyapunov theory. Simulation and hardware-in-the-loop test results show that the designed pressure control strategy can maintain the steady-state pressure tracking error of the EBBS active braking within 0.15 MPa under various operating conditions.

Key words: vehicle engineering, electronic boost brake system, multi-dimensional nonlinear disturbance, adaptive pressure control, hardware-in-the-loop