汽车工程 ›› 2024, Vol. 46 ›› Issue (6): 1034-1044.doi: 10.19562/j.chinasae.qcgc.2024.06.010
收稿日期:
2023-12-29
修回日期:
2024-02-20
出版日期:
2024-06-25
发布日期:
2024-06-19
通讯作者:
武建华
E-mail:tjhwu@jnu.edu.cn
基金资助:
Tao Ye1,Jianhua Wu2(),Linfeng Zheng3,Yuxin Zhang1,Chaofeng Hong1
Received:
2023-12-29
Revised:
2024-02-20
Online:
2024-06-25
Published:
2024-06-19
Contact:
Jianhua Wu
E-mail:tjhwu@jnu.edu.cn
摘要:
正弦纹波电流(SRC)充电对锂离子电池充电性能有一定改善,但已有的SRC充电研究均基于1C及以下的直流倍率,与直流充电相比没有取得显著的优化。为适应市场快速充电需求,本文首次探究了2C高倍率SRC快充对锂电池循环寿命的性能影响。通过对不同交流频率、振幅工况的循环寿命实验后的电池容量、内阻、温升和容量增量(IC)分析表明,尽管所提出的SRC快充会因为电流有效值变大导致温升高于直流,但电池寿命性能却显著优于直流;并在交流振幅为3C(AC/DC = 1.5)、交流频率高于特征频率(825 Hz)工况时寿命性能达到最优。其中,10 kHz频率工况在100个循环后,电池容量衰减和活性物质损失(LAM)分别比直流降低了70.37%、59.6%;200个循环后内阻增量仅为直流的1/3.51,容量仅衰减51.17%,比直流延长251%的使用寿命。
叶涛,武建华,郑林锋,张宇鑫,洪朝锋. 正弦纹波电流对锂电池快充性能影响的研究[J]. 汽车工程, 2024, 46(6): 1034-1044.
Tao Ye,Jianhua Wu,Linfeng Zheng,Yuxin Zhang,Chaofeng Hong. Study on Lithium Battery Fast Charge Performance with Ripple Charging Current[J]. Automotive Engineering, 2024, 46(6): 1034-1044.
1 | 兰凤崇, 陈继开, 陈吉清, 等. 实车数据驱动的锂电池剩余使用寿命预测方法研究 [J]. 汽车工程, 2023, 45(2): 175-182. |
LAN F C, CHEN J K, CHEN J Q, et al. Research on residual service life prediction method of Lithium battery driven by real vehicle data [J]. Automotive Engineering, 2023, 45(2): 175-182. | |
2 | 梁海强, 何洪文, 代康伟, 等. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究 [J]. 汽车工程, 2023, 45(5): 825-835,844. |
LIANG H Q, HE H W, DAI K W, et al. Research on life prediction method of lithium-ion battery of electric vehicle by integrating empirical aging model and mechanism model [J]. Automotive Engineering, 2023, 45(5): 825-835,844. | |
3 | GE M F, LIU Y, JIANG X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 109057. |
4 | XIONG R, ZHANG Y, WANG J, et al. Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles [J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4110-4121. |
5 | ZHAO J, TIAN L, CHENG L. Review on state estimation and remaining useful life prediction methods for lithium-ion battery [J]. Power Generation Technology, 2023, 44(1): 1-17. |
6 | HU X, ZHENG Y, HOWEY D A, et al. Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives[J]. Progress in Energy and Combustion Science, 2020, 77: 100806. |
7 | UNO M, TANAKA K. Influence of high-frequency charge-discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells [J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1505-1515. |
8 | UDDIN K, MOORE A D, BARAI A, et al. The effects of high frequency current ripple on electric vehicle battery performance[J]. Applied Energy, 2016, 178: 142-154. |
9 | JUANG L W, KOLLMEYER P J, ANDERS A E, et al. Investigation of the influence of superimposed AC current on lithium-ion battery aging using statistical design of experiments[J]. Journal of Energy Storage, 2017, 11: 93-103. |
10 | GOLDAMMER E, GENTEJOHANN M, SCHLÜTER M, et al. The impact of an overlaid ripple current on battery aging: the development of the sicwell dataset [J]. Batteries, 2022, 8(2): 11. |
11 | BRAND M J, HOFMANN M H, SCHUSTER S S, et al. The influence of current ripples on the lifetime of lithium-ion batteries [J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10438-10445. |
12 | BESSMAN A, SOARES R, WALLMARK O, et al. Aging effects of AC harmonics on lithium-ion cells[J]. Journal of Energy Storage, 2019, 21: 741-749. |
13 | GHASSEMI A, BANERJEE P C, HOLLENKAMP A F, et al. Effects of alternating current on Li-ion battery performance: monitoring degradative processes with in-situ characterization techniques [J]. Applied Energy, 2021, 284: 116192. |
14 | GHASSEMI A, HOLLENKAMP A F, BANERJEE P C, et al. Impact of high-amplitude alternating current on LiFePO4 battery life performance: investigation of AC-preheating and microcycling effects [J]. Applied Energy, 2022, 314: 118940. |
15 | SMITH M J, GLADWIN D T, STONE D A. An analysis of the influence of high-frequency ripple currents on dynamic charge acceptance in lead-acid batteries [J]. Journal of Energy Storage, 2019, 22: 27-35. |
16 | GUENA T, LEBLANC P. How depth of discharge affects the cycle life of lithium-metal-polymer batteries[C]. INTELEC 06-Twenty-Eighth International Telecommunications Energy Conference. IEEE, 2006: 1-8. |
17 | CHEN L R, WU S L, SHIEH D T, et al. Sinusoidal-ripple-current charging strategy and optimal charging frequency study for Li-ion batteries [J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 88-97. |
18 | CHEN L R, CHU N Y, WANG C S, et al. Design of a reflex-based bidirectional converter with the energy recovery function [J]. IEEE Transactions on Industrial Electronics, 2008, 55(8): 3022-3029. |
19 | CAMPBELL I D, MARZOOK M, MARINESCU M, et al. How observable is lithium plating? differential voltage analysis to identify and quantify lithium plating following fast charging of cold lithium-ion batteries [J]. Journal of the Electrochemical Society, 2019, 166(4): A725-A739. |
20 | ZHANG Z, WANG Z L, LU X. Suppressing lithium dendrite growth via sinusoidal ripple current produced by triboelectric nanogenerators [J]. Advanced Energy Materials, 2019, 9(20): 1900487. |
21 | HOQUE M A, NURMI P, KUMAR A, et al. Data driven analysis of lithium-ion battery internal resistance towards reliable state of health prediction [J]. Journal of Power Sources, 2021, 513: 230519. |
22 | GUO X, XU B, ZHENG L, et al. Robustness enhanced capacity estimation method for lithium-ion batteries based on multi-voltage-interval incremental capacity peaks [J]. Frontiers in Energy Research, 2023, 11: 1207194. |
23 | TELIZ E, ZINOLA C F, DíAZ V J E A. Identification and quantification of ageing mechanisms in Li-ion batteries by electrochemical impedance spectroscopy [J]. Electrochimica Acta, 2022, 426: 140801. |
24 | DUBARRY M, TRUCHOT C, LIAW B Y. Synthesize battery degradation modes via a diagnostic and prognostic model [J]. Journal of Power Sources, 2012, 219: 204-216. |
25 | PASTOR-FERNÁNDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems [J]. Journal of Power Sources, 2017, 360: 301-318. |
[1] | 邝男男,胡帛涛,栗国,赵光磊,冯爽,许立坤. 电池模组热扩散精准建模及高效仿真研究[J]. 汽车工程, 2024, 46(4): 652-661. |
[2] | 刘万里,李子涵,梁宏毅,陈吉清,莫丙达. 基于相似性优化模型样本的实车锂电池健康状态分析[J]. 汽车工程, 2024, 46(3): 489-497. |
[3] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[4] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[5] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[6] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[7] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[8] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[9] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
[10] | 王萍,弓清瑞,程泽,张吉昂. 基于AUKF的锂离子电池SOC估计方法[J]. 汽车工程, 2022, 44(7): 1080-1088. |
[11] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[12] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[13] | 马彦,李佳怡,马乾,陈明超. 基于迭代动态规划的动力电池组热管理优化策略[J]. 汽车工程, 2022, 44(5): 709-721. |
[14] | 刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475. |
[15] | 孙涛,郑侠,郑岳久,卢宇芳,匡柯,韩雪冰. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
|