| [1] |
付佩,周紫佳,兰利波,等.氢燃料电池汽车发动机关键技术研究现状及趋势展望[J].汽车工程学报,2022,12(4):388-398. FU Pei, ZHOU Zijia, LAN Libo, et al. Research status and development trends of key technologies for hydrogen fuel cell vehicle engines [J]. Journal of Automotive Engineering, 2022, 12(4): 388-398.
|
| [2] |
奥海尔,车硕源,Colella,等.燃料电池基础: Fuel cell fundamentals[M].北京:电子工业出版社,2007.
|
|
AO Haier, CHE Shuoyuan, COLELLA W, et al. Fuel cell fundamentals[M]. Beijing:Electronics Industry Press, 2007.
|
| [3] |
吴钊颖, 罗夏爽, 罗柳轩, 等. 氢燃料电池阳极抗一氧化碳毒化催化剂的研究进展与展望[J]. 中国科学:技术科学, 2024, 54(4): 567-583.
|
|
WU Zhaoying, LUO Xiashuang, LUO Liuxuan, et al. Progress and prospects of anti-carbon monoxide poisoning catalysts for hydrogen fuel cell anodes[J]. Science in China: Technological Sciences, 2024, 54(4): 567-583.
|
| [4] |
张鹏, 李佳烨, 潘原. 单原子催化剂在氢燃料电池阴极氧还原反应中的研究进展[J]. 太阳能学报, 2022, 43(6): 306-320.
|
|
ZHANG Peng, LI Jiaye, PAN Yuan. Progress of single-atom catalysts in the cathodic oxygen reduction reaction of hydrogen fuel cells[J]. Journal of Solar Energy, 2022, 43(6): 306-320.
|
| [5] |
郝策, 刘自若, 刘炜, 等. 用于氧还原反应的碳基负载金属单原子催化剂研究进展[J]. 无机材料学报, 2021, 36(8): 820-834.
|
|
HAO Ce, LIU Ziruo, LIU Wei, et al. Progress of carbon-based metal-loaded single-atom catalysts for oxygen reduction reactions[J]. Journal of Inorganic Materials, 2021, 36(8): 820-834.
|
| [6] |
SONG Z, LI J, ZHANG Q, et al. Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells[J]. Carbon Energy, 2023, 5(7): 19.
|
| [7] |
TANG M, YANG T, YANG X, et al. Single-atom catalysts for proton exchange membrane fuel cell: anode anti-poisoning & characterization technology[J]. Electrochimica Acta, 2023, 446: 142120.
|
| [8] |
LIAO X, LU R, XIA L, et al. Density functional theory for electrocatalysis[J]. Energy & Environmental Materials, 2022, 5(1): 157-185.
|
| [9] |
王甲一, 车春霞, 朱吉钦, 等. 基于结构描述符的催化剂理论设计研究进展[J]. 中国科学: 化学, 2024, 54(11): 2071-2082.
|
|
WANG Jiayi, CHE Chunxia, ZHU Jiqin, et al. Progress in theoretical design of catalysts based on structural descriptors[J]. Science in China: Chemistry, 2024, 54(11): 2071-2082.
|
| [10] |
竹涛, 韩一伟, 刘帅, 等. 单原子位点催化剂及其电催化应用研究进展[J]. 化工进展, 2022, 2: 41.
|
|
ZHU Tao, HAN Yiwei, LIU Shuai, et al. Progress of single-site catalysts and their electrocatalytic applications[J]. Advances in Chemical Engineering, 2022, 2: 41.
|
| [11] |
TAMTAJI M, GAO H, HOSSAIN M D, et al. Machine learning for design principles for single atom catalysts towards electrochemical reactions[J]. Journal of Materials Chemistry A, 2022, 10(29): 15309-15331.
|
| [12] |
LOPES P P, FREITAS K S, TICIANELLI E A. CO tolerance of PEMFC anodes: mechanisms and electrode designs[J]. Electrocatalysis, 2010, 1(4): 200-212.
|
| [13] |
WEI K, WANG X, GE J. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms[J]. Chemical Society Reviews, 2024, 53(17): 8903-8948.
|
| [14] |
YANG Z, CHEN C, ZHAO Y, et al. Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction[J]. Advanced Materials, 2023, 35(1): 2208799.
|
| [15] |
HUANG Z, LU R, ZHANG Y, et al. A highly efficient pH-universal HOR catalyst with engineered electronic structures of single Pt sites by isolated Co atoms[J]. Advanced Functional Materials, 2023, 33(47): 2306333.
|
| [16] |
LIN J, ZHANG Z, QIU J, et al. Synergy between single atom and nanoclusters promotes power and CO tolerant performance in PEMFCs[J]. Chemical Engineering Journal, 2025, 506: 160156.
|
| [17] |
LI H, WANG X, GONG X, et al. “One stone three birds” of a synergetic effect between Pt single atoms and clusters makes an ideal anode catalyst for fuel cells[J]. Journal of Materials Chemistry A, 2023, 11(27): 14826-14832.
|
| [18] |
LONG D, LIU Y, PING X, et al. Constructing CO-immune water dissociation sites around Pt to achieve stable operation in high CO concentration environment[J]. Nature Communications, 2024, 15(1): 8105.
|
| [19] |
WANG X, LI Y, WANG Y, et al. Proton exchange membrane fuel cells powered with both CO and H2[J]. Proceedings of the National Academy of Sciences, 2021, 118(43): e2107332118.
|
| [20] |
YANG X, WANG Y, WANG X, et al. CO‐tolerant PEMFC anodes enabled by synergistic catalysis between iridium single‐atom sites and nanoparticles[J]. Angew. Chem. Int. Ed., 2021, 60(50): 26177-26183.
|
| [21] |
ZHU L, LI Z, YANG M, et al. An effective approach to enhance hydrogen evolution reaction and hydrogen oxidation reaction by Ni doping to MoO3[J]. Small, 2023, 19(49): 2303481.
|
| [22] |
WANG M, ZHANG H, LIU Y, et al. Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction[J]. Journal of Energy Chemistry, 2022, 72: 56-72.
|
| [23] |
WANG F, YANG J, LI J, et al. Which is best for ORR: single atoms, nanoclusters, or coexistence?[J]. ACS Energy Letters, 2024, 9(1): 93-101.
|
| [24] |
LAI W H, ZHANG L, YAN Z, et al. Activating inert surface Pt single atoms via subsurface doping for oxygen reduction reaction[J]. Nano Letters, 2021, 21(19): 7970-7978.
|
| [25] |
LIU B, FENG R, BUSCH M, et al. Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction[J]. ACS Nano, 2022, 16(9): 14121-14133.
|
| [26] |
XIAO M, ZHU J, LI G, et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2019, 58(28): 9640-9645.
|
| [27] |
QIN J, LIU H, ZOU P, et al. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2022, 144(5): 2197-2207.
|
| [28] |
MEHMOOD A, GONG M, JAOUEN F, et al. High loading of single atomic iron sites in Fe-NC oxygen reduction catalysts for proton exchange membrane fuel cells[J]. Nature Catalysis, 2022, 5(4): 311-323.
|
| [29] |
XU H, JIA H, LI H, et al. Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2021, 297: 120390.
|
| [30] |
YU Z, XU H, CHENG D. Design of single atom catalysts[J]. Advances in Physics: X, 2021, 6(1): 1905545.
|
| [31] |
LUO J, ZHANG Y, LU Z, et al. Oxygen-coordinated Cr single-atom catalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Angewandte Chemie International Edition, 2025, 137(17): 202500500.
|
| [32] |
BACK S, BAGHERZADEH MOSTAGHIMI A H, SIAHROSTAMI S. Enhancing oxygen reduction reaction activity using single atom catalyst supported on tantalum pentoxide[J]. ChemCatChem, 2022, 14(11): e202101763.
|
| [33] |
CHEN Z, ZHENG H, ZHANG J, et al. Covalent organic frameworks derived single-atom cobalt catalysts for boosting oxygen reduction reaction in rechargeable Zn-air batteries[J]. Journal of Colloid and Interface Science, 2024, 670: 103-113.
|
| [34] |
YANG Z, QIAN S, WANG Y, et al. Graphene benefits penta-nitrogen coordinated iron and catalytic stability of oxygen reduction reaction[J]. Chemical Engineering Journal, 2024, 496: 154141.
|
| [35] |
KULKARNI A, SIAHROSTAMI S, PATEL A, et al. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chemical Reviews, 2018, 118(5): 2302-2312.
|
| [36] |
CALLE-VALLEJO F, TYMOCZKO J, COLIC V, et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors[J]. Science, 2015, 350(6257): 185-189.
|
| [37] |
XIA G, TAN Y, CHEN X, et al. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene[J]. Advanced Materials, 2015, 27(39): 5981-5988.
|
| [38] |
JING H, ZHU P, ZHENG X, et al. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis[J]. Advanced Powder Materials, 2022, 1(1): 14-26.
|
| [39] |
SUN H, GAO L, LI Y, et al. Screening of single-atomic catalysts loaded on two-dimensional transition metal dichalcogenides for electrocatalytic oxygen reduction via high throughput ab initio calculations[J]. Journal of Colloid and Interface Science, 2025, 684: 251-261.
|
| [40] |
WANG S, MENG K, QIN L, et al. High-throughput screening of transition metal phthalocyanine electrocatalysts for oxygen reduction reactions[J]. International Journal of Hydrogen Energy, 2024, 88: 850-857.
|
| [41] |
LIN S, XU H, WANG Y, et al. Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning[J]. Journal of Materials Chemistry A, 2020, 8(11): 5663-5670.
|
| [42] |
ZHU Y, XU B, HAN C, et al. Potential correlation between thermal transport and catalytic performance in single metal atom cata
|