汽车工程 ›› 2025, Vol. 47 ›› Issue (7): 1285-1295.doi: 10.19562/j.chinasae.qcgc.2025.07.006
• • 上一篇
收稿日期:2025-01-10
修回日期:2025-03-27
出版日期:2025-07-25
发布日期:2025-07-18
通讯作者:
张欣
E-mail:22121411@bjtu.edu.cn
基金资助:
Haohua Yan1,Congxin Li2,Lide Yi1,Ying Liu1,Yikang Liu1,Xin Zhang1(
)
Received:2025-01-10
Revised:2025-03-27
Online:2025-07-25
Published:2025-07-18
Contact:
Xin Zhang
E-mail:22121411@bjtu.edu.cn
摘要:
为了提升质子交换膜燃料电池(PEMFC)空气供给系统的稳定性、安全性,并延长其使用寿命,本文提出了一种基于残差模型的燃料电池空气供给系统故障诊断方法,提出空气供给系统4阶状态空间模型,验证模型误差在1%以内,确保了所建模型的精度和有效性。设计了空气供给系统滑模观测器,引入高斯噪声模拟实际传感器中的噪声,结果表明在测量值噪声的影响下观测器能较好地跟踪实际值,且估计误差在2%以内。通过观测器实时生成残差对系统故障进行检测,针对残差信号无法准确识别故障类型的问题,引入相对故障敏感度函数建立理论故障敏感度特征矩阵,计算系统实时状态量与理论故障敏感度之间的欧式距离,实现对空气供给系统的故障诊断和隔离,结果表明该方法能够迅速准确地识别并隔离出空压机故障、管道泄漏故障及堵塞故障。
严浩华,李从心,伊力德,刘颖,刘怡康,张欣. 车用燃料电池空气供给系统故障诊断研究[J]. 汽车工程, 2025, 47(7): 1285-1295.
Haohua Yan,Congxin Li,Lide Yi,Ying Liu,Yikang Liu,Xin Zhang. Research on Air Supply System Fault Diagnosis for Vehicle Fuel Cells[J]. Automotive Engineering, 2025, 47(7): 1285-1295.
| [1] | WANG Y, CHEN K S, MISHLER J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007. |
| [2] | WU D, LI K, GAO Y, et al. Design and simulation of proton exchange membrane fuel cell system[J]. Energy Reports, 2021, 7: 522-530. |
| [3] | BENMOUNA A, BECHERIF M, DEPERNET D, et al. Fault diagnosis methods for proton exchange membrane fuel cell system[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1534-1543. |
| [4] | WON J, OH H, HONG J, et al. Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells[J]. Renewable Energy, 2021, 180: 343-352. |
| [5] | ZHENG Z, PETRONE R, PÉRA M C, et al. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems[J]. International Journal of Hydrogen Energy, 2013, 38(21): 8914-8926. |
| [6] | PETRONE R, ZHENG Z, HISSEL D, et al. A review on model-based diagnosis methodologies for PEMFCs[J]. International Journal of Hydrogen Energy, 2013, 38(17): 7077-7091. |
| [7] | YANG D, WANG Y, CHEN Z. Robust fault diagnosis and fault tolerant control for PEMFC system based on an augmented LPV observer[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13508-13522. |
| [8] | SERON M M, DE DONÁ J A. Robust fault estimation and compensation for LPV systems under actuator and sensor faults[J]. Automatica, 2015, 52: 294-301. |
| [9] | KAMAL M M, YU D W, YU D L. Fault detection and isolation for PEM fuel cell stack with independent RBF model[J]. Engineering Applications of Artificial Intelligence, 2014, 28: 52-63. |
| [10] | SINHA V, MONDAL S. Adaptive unknown input observer approach for multi-fault diagnosis of PEM fuel cell system with time-delays[J]. Journal of Control and Decision, 2021, 8(2): 222-232. |
| [11] | SHAO M, ZHU X J, CAO H F, et al. An artificial neural network ensemble method for fault diagnosis of proton exchange membrane fuel cell system[J]. Energy, 2014, 67: 268-275. |
| [12] | LI Z, OUTBIB R, GIURGEA S, et al. Diagnosis for PEMFC systems: a data-driven approach with the capabilities of online adaptation and novel fault detection[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 5164-5174. |
| [13] | LIU Z, PEI M, HE Q, et al. A novel method for polymer electrolyte membrane fuel cell fault diagnosis using 2D data[J]. Journal of Power Sources, 2021, 482: 228894. |
| [14] | 周苏,杨铠,胡哲.FCM方法和SVM方法在燃料电池故障诊断模式识别中的对比研究[J].机电一体化,2016,22(5):3-7,21. |
| ZHOU Su,YANG Kai,HU Zhe.Comparison on methods of pattern recognition in PEMFC faults diagnosis based on FCM and SVM[J].Mechatronics,2016,22(5):3-7, 21. | |
| [15] | TANG Z, HUANG Q A, WANG Y J, et al. Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2020, 468: 228361. |
| [16] | REN P, PEI P, LI Y, et al. Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance[J]. Applied Energy, 2019, 239: 785-792. |
| [17] | TURHAN A, HELLER K, BRENIZER J S, et al. Passive control of liquid water storage and distribution in a PEFC through flow-field design[J]. Journal of Power Sources, 2008, 180(2): 773-783. |
| [18] | AKITOMO F, SASABE T, YOSHIDA T, et al. Investigation of effects of high temperature and pressure on a polymer electrolyte fuel cell with polarization analysis and X-ray imaging of liquid water[J]. Journal of Power Sources, 2019, 431: 205-209. |
| [19] | CHEN H, ZHAO X, ZHANG T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review[J]. Energy Conversion and Management, 2019, 182: 282-298. |
| [20] | 梁栋,侯明,窦美玲,等.质子交换膜燃料电池燃料饥饿现象[J].电源技术,2010,34(8):767-770. |
| LIANG D,HOU M,DOU M L,et al. Study on behavior of proton exchange membrane fuel cell under fuel starvation conditions[J]. Chinese Journal of Power Sources,2010,34(8):767-770. | |
| [21] | 刘嘉蔚,李奇,陈维荣,等.基于在线序列超限学习机和主成分分析的蒸汽冷却型燃料电池系统快速故障诊断方法[J].电工技术学报,2019,34(18):3949-3960. |
| LIU J W,LI Q,CHEN W R,et al. Fast fault diagnosis method of evaporatively cooled fuel cell system based on online sequential extreme learning machine and principal component analysis[J]. Transactions China Electrotechnical Society,2019,34(18):3949-3960. | |
| [22] | PUKRUSHPAN J T, STEFANOPOULOU A G, PENG H. Control of fuel cell breathing[J]. IEEE Control Systems Magazine, 2004, 24(2): 30-46. |
| [23] | ABOUOMAR M S, ZHANG H J, SU Y X. Fractional order fuzzy PID control of automotive PEM fuel cell air feed system using neural network optimization algorithm[J]. Energies, 2019, 12(8): 1435. |
| [24] | DING S X. Model-based fault diagnosis techniques: design schemes, algorithms, and tools[M]. Springer Science & Business Media, 2008. |
| [25] | DE LIRA S, PUIG V, QUEVEDO J. PEM fuel cell system robust LPV model-based fault diagnosis[C]. 20th International Workshop on Principles of Diagnosis, 2009: 91-98. |
| [26] | AITOUCHE A, YANG Q, BOUAMAMA B O. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical redundancy: an application via parity space approach[J]. The European Physical Journal-Applied Physics, 2011, 54(2): 23408. |
| [27] | SCHMID M, GEBAUER E, HANZL C, et al. Active model-based fault diagnosis in reconfigurable battery systems[J]. IEEE Transactions on Power Electronics, 2020, 36(3): 2584-2597. |
| [28] | ZHU J, ZHAO J, JIANG B. Actuator fault reconstruction for PEM fuel cell air-feed system using adaptive sliding mode observer[C]. 2020 Chinese Automation Congress (CAC). IEEE, 2020: 4406-4411. |
| [29] | 雍加望,赵倩倩,冯能莲.基于非线性动态模型的质子交换膜燃料电池故障诊断[J].化工学报,2022,73(9):3983-3993. |
| YONG J W, ZHAO Q Q, FENG N L. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model[J]. CIESC Journal, 2022,73(9):3983-3993. | |
| [30] | 杨朵.燃料电池空气供给系统控制与故障诊断策略研究[D].合肥: 中国科学技术大学,2021. |
| YANG D. Research on control and fault diagnosis strategy of fuel cell air supply system[D]. Hefei: University of Science and Technology of China,2021. | |
| [31] | LIU J, LIN W, ALSAADI F, et al. Nonlinear observer design for PEM fuel cell power systems via second order sliding mode technique[J]. Neurocomputing, 2015, 168: 145-151. |
| [32] | KULLAA J. Detection, identification, and quantification of sensor fault in a sensor network[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 208-221. |
| [33] | 韩峰. 燃料电池发动机系统氢安全监测与故障诊断研究[D]. 北京: 北京交通大学, 2020. |
| [1] | 王聘玺,李立国,范伟,杨福源,欧阳明高,程毅,刘丹. 面向长途重载货运的氢能交通交能融合方案[J]. 汽车工程, 2025, 47(7): 1229-1237. |
| [2] | 陆继轩,郑伟波,李翔,王倩倩,李冰,明平文. 质子交换膜燃料电池氢气渗透研究进展及抑制措施概述[J]. 汽车工程, 2025, 47(7): 1238-1257. |
| [3] | 邱宇奇,杨川,曾韬,张元海,刘正兴,张学智,喻清华,张财志. 燃料电池发动机空气系统旁通流量估计[J]. 汽车工程, 2025, 47(7): 1258-1267. |
| [4] | 李子毅,罗马吉,黄易元,王陆松. 紧凑型氢引射器设计及其对车用燃料电池性能影响研究[J]. 汽车工程, 2025, 47(7): 1268-1276. |
| [5] | 李楠,白雪宜,杨抖,李贵敬,马诗会. PEMFC金属泡沫流场全形态三维性能模拟及结构优化[J]. 汽车工程, 2025, 47(7): 1277-1284. |
| [6] | 付佩,张化喜,蔡旭,兰子剑,刘青山,陈轶嵩. 基于自抗扰控制的燃料电池供气系统协同控制研究[J]. 汽车工程, 2025, 47(5): 859-874. |
| [7] | 李光伟,韩雪,邢丹敏,明平文. 催化层/微孔层界面设计对PEMFC影响研究[J]. 汽车工程, 2025, 47(1): 77-84. |
| [8] | 朱仲文,程谭龙,江维海,周定华,李丞,季传龙. 燃料电池氢气系统自适应滑模解耦控制研究[J]. 汽车工程, 2025, 47(1): 85-95. |
| [9] | 任立海,陈黎黎,杨振华,蒋成约,赵清江,刘西,胡远志. 冲击载荷下PEMFC力-电耦合建模及电学响应研究[J]. 汽车工程, 2025, 47(1): 96-106. |
| [10] | 徐寅嵩,李文浩,杜常清,颜伏伍. 考虑运行参数可寻优范围的PEMFC系统净功率优化[J]. 汽车工程, 2024, 46(7): 1137-1146. |
| [11] | 张思龙,梁满志,孙珩凯,陈继成,张辉. 燃料电池氢气供应系统多功能测试平台设计[J]. 汽车工程, 2024, 46(7): 1147-1156. |
| [12] | 陈吉清,冯雨佳,兰凤崇,王平. 基于1dCNN-LSTM量化单体异常性的动力电池故障诊断方法[J]. 汽车工程, 2024, 46(7): 1177-1188. |
| [13] | 胡杰,程雅钰,余海,贾超明,卿海华. 基于WOA-VMD和香农熵的锂电池早期故障诊断研究[J]. 汽车工程, 2024, 46(7): 1189-1196. |
| [14] | 余宾宴,马建,陈轶嵩,耿莉敏,王茜. 微孔间距和孔径对PEMFC气体扩散层表面液滴流动传输特性的影响[J]. 汽车工程, 2024, 46(6): 1025-1033. |
| [15] | 张维东,蒋三青,郭文军,葛晓成,胡发跃,刘瑶. 车用燃料电池引射器设计及测试评价方法研究[J]. 汽车工程, 2024, 46(6): 1054-1061. |
|
||