汽车工程 ›› 2025, Vol. 47 ›› Issue (7): 1285-1295.doi: 10.19562/j.chinasae.qcgc.2025.07.006

• • 上一篇    

车用燃料电池空气供给系统故障诊断研究

严浩华1,李从心2,伊力德1,刘颖1,刘怡康1,张欣1()   

  1. 1.北京交通大学机械与电子控制工程学院,北京 100044
    2.国家电投集团氢能科技发展有限公司,北京 102600
  • 收稿日期:2025-01-10 修回日期:2025-03-27 出版日期:2025-07-25 发布日期:2025-07-18
  • 通讯作者: 张欣 E-mail:22121411@bjtu.edu.cn
  • 基金资助:
    第二十七届中国科协年会学术论文。国家重点研发计划项目(2022YFB2502402)

Research on Air Supply System Fault Diagnosis for Vehicle Fuel Cells

Haohua Yan1,Congxin Li2,Lide Yi1,Ying Liu1,Yikang Liu1,Xin Zhang1()   

  1. 1.School of Mechanical and Electronic Control Engineering,Beijing Jiaotong University,Beijing 100044
    2.State Power Investment Corporation Hydrogen Energy Tech Co. ,Ltd. ,Beijing 102600
  • Received:2025-01-10 Revised:2025-03-27 Online:2025-07-25 Published:2025-07-18
  • Contact: Xin Zhang E-mail:22121411@bjtu.edu.cn

摘要:

为了提升质子交换膜燃料电池(PEMFC)空气供给系统的稳定性、安全性,并延长其使用寿命,本文提出了一种基于残差模型的燃料电池空气供给系统故障诊断方法,提出空气供给系统4阶状态空间模型,验证模型误差在1%以内,确保了所建模型的精度和有效性。设计了空气供给系统滑模观测器,引入高斯噪声模拟实际传感器中的噪声,结果表明在测量值噪声的影响下观测器能较好地跟踪实际值,且估计误差在2%以内。通过观测器实时生成残差对系统故障进行检测,针对残差信号无法准确识别故障类型的问题,引入相对故障敏感度函数建立理论故障敏感度特征矩阵,计算系统实时状态量与理论故障敏感度之间的欧式距离,实现对空气供给系统的故障诊断和隔离,结果表明该方法能够迅速准确地识别并隔离出空压机故障、管道泄漏故障及堵塞故障。

关键词: 燃料电池, 空气供给系统, 滑模观测器, 故障诊断

Abstract:

In order to improve the stability and safety of the air supply system of proton exchange membrane fuel cell (PEMFC) and extend its service life, in this paper, a residual model-based fault diagnosis method for the fuel cell air supply system is proposed. A fourth-order state space model of the air supply system model is proposed, and the model error is verified to be within 1%, which ensures the accuracy and validity of the constructed model. A sliding mode observer for the air supply system is designed, and Gaussian noise is introduced to simulate the noise in the actual sensors. The results show that the observer can track the actual values better, and the estimation error is within 2%. The residuals are generated by the observer in real time to detect the system faults. For the problem of inaccurate identification of fault types by residual signals, the relative fault sensitivity function is introduced to establish the theoretical fault sensitivity feature matrix, and the Euclidean distance between the real-time system state quantities and the theoretical fault sensitivity is calculated to achieve the fault diagnosis and isolation of the air supply system. The results show that the method can quickly and accurately identify and isolate air compressor faults, pipe leakage faults and blockage faults.

Key words: fuel cell, air supply systems, sliding mode observer, fault detection