汽车工程 ›› 2025, Vol. 47 ›› Issue (10): 1933-1941.doi: 10.19562/j.chinasae.qcgc.2025.10.009

• • 上一篇    

基于离线路径规划与iLQR控制的汽车自动紧急转向研究

涂宁宁1(),曹安2,袁沐1,侯明洋1,梁盛平1   

  1. 1.岚图汽车科技有限公司智能驾驶,武汉 430056
    2.岚图汽车科技有限公司底盘开发,武汉 430056
  • 收稿日期:2025-01-23 修回日期:2025-04-29 出版日期:2025-10-25 发布日期:2025-10-20
  • 通讯作者: 涂宁宁 E-mail:tuningning@voyah.com.cn

Research on Autonomous Emergency Steering of Vehicle Based on Offline Path Planning and iLQR Control

Ningning Tu1(),An Cao2,Mu Yuan1,Mingyang Hou1,Shengping Liang1   

  1. 1.Intelligent Driving,VOYAH Automobile Technology Co. ,Ltd. ,Wuhan 430056
    2.Chassis Development,VOYAH Automobile Technology Co. ,Ltd. ,Wuhan 430056
  • Received:2025-01-23 Revised:2025-04-29 Online:2025-10-25 Published:2025-10-20
  • Contact: Ningning Tu E-mail:tuningning@voyah.com.cn

摘要:

本文针对自动紧急转向场景,基于最短逃逸时间,离线生成的贝塞尔轨迹作为实时的避障路径,并结合迭代线性二次调节器(iLQR)方法,进行轨迹跟踪和控制。使用仿真环境,对上述方法进行验证,相比传统的基于五次多项式生成的轨迹,“最速轨迹”更符合自动紧急转向要求。此外,结合离线生成的方式,其算力消耗较小,且充分利用了车辆的转向性能,减少了大量的参数标定。对于自动紧急转向,其控制误差变化更为剧烈,相应的控制输入较大,需要考虑系统的非线性。iLQR通过迭代的方式,在定义的预测空间内,得到最优控制输入,满足系统快速响应的要求。

关键词: 智能汽车, 自动紧急转向, 离线路径规划, 迭代线性二次调节器, 预测空间

Abstract:

In the study, an offline Bezier path is generated based on the shortest escaping time for AES (Autonomous Emergency Steering). An iLQR(iterative Linear Quadratic Regulator) scheme is introduced for trajectory tracking and control. Simulation is applied to validate the proposed method. It is found that compared to quintic polynomial, “brachistochrone curve” is more desirable for the emergency scene like AES, which achieves the relatively fastest collision avoidance. Combined with offline planning mode, the computation cost is acceptable, and steering performance is completely exploited, with much less parameter calibration. For AES, the control error is characterized by abruptness, and a large control input is always requested. The nonlinearity of system is essential to be taken into consideration. Through an iterative procedure in predictive horizon, the optimal control input is obtained, which satisfies the request of fast response during path track of AES.

Key words: intelligent vehicle, autonomous emergency steering, offline path planning, iLQR (iterative Linear Quadratic Regulator), predictive horizon