| [1] |
龙亚,王宝军,马林才,等. 车道保持辅助系统关键技术的国内外研究现状[J]. 现代制造技术与装备, 2017(5):75-76, 111.
|
|
LONG Y, WANG B J, MA L C, et al. Research status of key technology of car lane maintenance auxiliary system [J]. Home and Abroad Modern Manufacturing Technology and Equipment, 2017(5):75-76, 111.
|
| [2] |
施凯津. 智能汽车紧急变道避障轨迹规划与控制方法研究[D].镇江:江苏大学, 2018.
|
|
SHI K J. Research on trajectory planning and control method of emergency lane change for intelligent vehicles [D]. Zhenjiang: Jiangsu University, 2018.
|
| [3] |
ANDERSON S, PETERS S, PILUTTI T, et al. Design and development of an optimal-control-based framework for trajectory planning, threat assessment, andsemi-autonomouscontrol of passenger vehicles in hazard avoidance scenarios [C]. Proceedings of the14th International Symposiumon Robotics Research, 2009.
|
| [4] |
MUKAI M, KAWABE T, NISHIRA H, et al. On vehicle path generation method for collision avoidance using mixed integer programming [C]. Proceedings of the 16th IEEE International Conference on Control Applications, 2007: 1371-1375.
|
| [5] |
王莹,卫翀,马路.基于二次规划的智能车辆动态换道轨迹规划研究[J].中国公路学报,2021, 34(7): 79-94.
|
|
WANG Y, WEI C, MA L. Dynamic lane-changing trajectory planning model for intelligent vehicle based on quadratic programming [J]. China Journal of Highway and Transport, 2021, 34(7): 79-94.
|
| [6] |
ALI M, GRAY A, GAO Y, et al. Multi-objective collision avoidance [C]. Proceedings of the ASME 2013 Dynamic Systems and Control Conference, 2013, 3: 1-10.
|
| [7] |
GRAY A, GAO Y, LIN T, et al. Predictive control for agile semi-autonomous ground vehicles using motion primitives [C]. 2012 American Control Conference (ACC), 2012: 4239-4244.
|
| [8] |
GAO Y, LIN T, BORRELLI F, et al. Predictive control of autonomous ground vehicles with obstacle avoidance on slippery roads [C]. Proceedings of the ASME 2010 Dynamic Systems and Control Conference, 2010, 1: 265-272.
|
| [9] |
KUWATA Y, KARAMAN S. Real-time motion planning with applications to autonomous urban driving [J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1105-1118.
|
| [10] |
MOUHAGIR H, TALJ R, CHERFAOUI V, et al. Integrating safety distances with trajectory planning by modifying the occupancy grid for autonomous vehicle navigation[C]. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 2016, 1114-1119.
|
| [11] |
张新锋, 陈建伟,左思. 基于贝塞尔曲线的智能商用车换道避障轨迹规划[J]. 科学技术与工程, 2020, 20 (29): 12150-12157.
|
|
ZHANG X F, CHEN J W, ZUO S. Trajectory planning for intelligent commercial vehicle obstacle avoidance based on quartic Bezier curve [J]. Science Technology and Engineering, 2020, 20(29): 12150-12157.
|
| [12] |
EIDEHALL A, DAVID M. Real time path planning for threat assessment and collision avoidance by steering [C]. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013, 916-921.
|
| [13] |
牛国臣, 李文帅, 魏洪旭. 基于双五次多项式的智能汽车换道轨迹规划[J]. 汽车工程, 2021, 43 (7): 978-986, 1004.
|
|
NIU G C,LI W S, WEI H X. Intelligent vehicle lane changing trajectory planning based on double quintic polynomials [J]. Automotive Engineering, 2021, 43 (7): 978-986, 1004.
|
| [14] |
RUPP A, STOLZ M. Survey on control schemes for automated driving on highways [M]. Springer International Publishing, 2017: 43-69.
|
| [15] |
NIE L Z, GUAN J Y, et al. Longitudinal speed control of autonomous vehicle based on a self-adaptive PID of radial basis function neural network [J]. IET Intelligent Transport Systems, 2018, 12(6): 485-494.
|
| [16] |
DONG X P, PEI H Y, GAN M. Autonomous vehicle lateral control based on fractional-order PID [C]. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC) 5 (2021): 830-835.
|
| [17] |
ZHANG G D, YONG X L, XU H Y, et al. Research on pressurizer pressure control system based on BP neural network control of self-adjusted PID parameters [J]. Applied Mechanics and Materials, 2013, 291-294: 2416-2423.
|
| [18] |
FERRARA A, GIAN P I. Design of an integral suboptimal second-order sliding mode controller for the robust motion control of robot manipulators [J]. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2316-2325.
|
| [19] |
胡杰, 张志凌, 钟杰锋,等. 考虑复杂扰动的轻型商用车路径跟踪混合控制方法[J]. 汽车工程, 2024, 46 (9): 1576-1586.
|
|
HU J, ZHANG Z L, ZHONG J F, et al. A hybrid control strategy for Light commercial vehicle path tracking considering complex disturbances [J]. Automotive Engineering, 2024, 46 (9): 1576-1586.
|
| [20] |
陈亮, 秦兆博, 孔伟伟,等. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61 (9): 906-912.
|
|
CHEN L, QIN Z B, KONG W W, et al. Lateral control using LQR for intelligent vehicles based on the optimal front-tire lateral force [J]. Journal of Tsinghua University (Science and Technology), 2021,61(9):906-912.
|
| [21] |
ZHENG Z A, YE Z M, ZHENG X Y. Intelligent Vehicle lateral control strategy research based on feedforward + predictive LQR algorithm with GA optimisation and PID compensation [J]. Scientific Reports, 2024, 14 (1).
|
| [22] |
MAYNE D. A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems [J]. International Journal of Control, 1966, 3(1): 85-95.
|
| [23] |
DIEHL M, BOCK H, DIEDAM H, et al. Fast direct multiple shooting algorithms for optimal robot control [J]. Fast Motions In Biomechanics and Robotics: Optimization and Feedback Control, 2006,340: 65-93.
|
| [24] |
MANCHESTER Z, SCOTT K. Derivative-free trajectory optimization with unscented dynamic programming [C]. 2016 IEEE 55th Conference on Decision and Control (CDC), 2016, 3642-3647.
|