汽车工程 ›› 2024, Vol. 46 ›› Issue (10): 1829-1841.doi: 10.19562/j.chinasae.qcgc.2024.10.010

• • 上一篇    下一篇

考虑侧风稳定性的汽车轨迹跟踪自适应时域模型预测控制

袁志群1,2,3(),陈衍强1,常宇轩1,霍殿生1,林立1,2   

  1. 1.厦门理工学院机械与汽车工程学院,厦门 361024
    2.福建省客车先进设计与制造重点实验室,厦门 361024
    3.福建省风灾害与风工程重点实验室,厦门 361024
  • 收稿日期:2024-04-24 修回日期:2024-06-07 出版日期:2024-10-25 发布日期:2024-10-21
  • 通讯作者: 袁志群 E-mail:yzqhnu@163.com
  • 基金资助:
    国家自然科学基金(52278537);福建省科技厅引导性项目(2021Y0045)

Model Predictive Control with Adaptive Horizon for Vehicle Trajectory Tracking Considering Crosswind Stability

Zhiqun Yuan1,2,3(),Yanqiang Chen1,Yuxuan Chang1,Diansheng Huo1,Li Lin1,2   

  1. 1.School of Mechanical and Automotive Engineering,Xiamen University of Technology,Xiamen 361024
    2.Fujian Provincial Key Laboratory of Advanced Design and Manufacture for Bus Coach,Xiamen 361024
    3.Fujian Provincial Key Laboratory of Wind Disaster and Wind Engineering,Xiamen 361024
  • Received:2024-04-24 Revised:2024-06-07 Online:2024-10-25 Published:2024-10-21
  • Contact: Zhiqun Yuan E-mail:yzqhnu@163.com

摘要:

为扩展模型预测控制的应用场景,提高智能汽车在极端风环境下的轨迹跟踪精度,提出了一种考虑侧风稳定性的自适应时域控制方法。首先,以跨海桥梁上轿车超车过程为研究对象,采用汽车空气动力学与系统动力学耦合方法建立轿车超车的侧风稳定性分析模型;接着,建立汽车侧偏安全风险模型,以侧偏风险等级、车速及横向误差为参考设计时域自适应调节器,实现预测时域和控制时域的动态调节;最后,采用CarSim和Simulink搭建联合仿真场景,通过五次多项式规划超车轨迹,验证控制器的跟踪精度及鲁棒性。结果表明:与固定时域及变权重模型预测控制器相比,改进后的控制器可以更好地抵抗“风-车-桥”的气动干扰,以较低的实时性代价提高了车辆轨迹跟踪精度,汽车侧风稳定性得到明显提升。

关键词: 智能汽车, 自动驾驶, 侧风稳定性, 自适应时域, 模型预测控制, 轨迹跟踪

Abstract:

In order to extend the application scenario of model predictive control and improve the trajectory tracking accuracy of intelligent vehicles in extreme wind environment, an adaptive horizon control method considering crosswind stability is proposed. Firstly, taking the process of car overtaking on the sea-crossing bridge as the research object, the crosswind stability analysis model of car overtaking is established by using the coupling method of vehicle aerodynamics and system dynamics. Then, the safety risk model of vehicle lateral motion is established, and the adaptive horizon regulator is designed taking into consideration of lateral motion risk level, vehicle speed and lateral error, so as to realize the dynamic adjustment of prediction horizon and control horizon. Finally, CarSim and Simulink are used to build a joint simulation scenario, and the overtaking trajectory is planned by quintic polynomial to verify the tracking accuracy and robustness of the controller. The results show that compared with the fixed horizon and variable weight model predictive controller, the improved controller can better resist the aerodynamic interference of ' wind-vehicle-bridge' and improve the vehicle trajectory tracking accuracy at a lower real-time cost, with significant improvement in vehicle crosswind stability.

Key words: intelligent car, automatic driving, crosswind stability, adaptive horizon, model predictive control, trajectory tracking