汽车工程 ›› 2024, Vol. 46 ›› Issue (8): 1403-1413.doi: 10.19562/j.chinasae.qcgc.2024.08.007

• • 上一篇    

基于改进LPV模型的自动驾驶轻型货车横向控制

颜伏伍1,2,3,向博文1,2,3,胡杰1,2,3(),陈锐鹏1,2,3,张志豪1,2,3,刘昊岩1,2,3,高宠智4   

  1. 1.新能源与智能网联车湖北工程技术研究中心,武汉 430070
    2.武汉理工大学,现代汽车零部件技术湖北省重点实验室,武汉 430070
    3.武汉理工大学,汽车零部件技术湖北省协同创新中心,武汉 430070
    4.东风汽车股份有限公司商品研发院,武汉 430000
  • 收稿日期:2024-01-29 修回日期:2024-03-24 出版日期:2024-08-25 发布日期:2024-08-23
  • 通讯作者: 胡杰 E-mail:auto_hj@163.com
  • 基金资助:
    湖北省科技重大专项(2022AAA001)

Lateral Control of Autonomous Light Truck Based on Improved LPV Model

Fuwu Yan1,2,3,Bowen Xiang1,2,3,Jie Hu1,2,3(),Ruipeng Chen1,2,3,Zhihao Zhang1,2,3,Haoyan Liu1,2,3,Chongzhi Gao4   

  1. 1.Hubei Technology Research Center of New Energy and Intelligent Connected Vehicle Engineering,Wuhan 430070
    2.Wuhan University of Technology,Hubei Key Laboratory of Modern Auto Parts Technology,Wuhan 430070
    3.Wuhan University of Technology,Auto Parts Technology Hubei Collaborative Innovation Center,Wuhan 430070
    4.Commercial Product R&D Institute,Dongfeng Automobile Co. ,Ltd. ,Wuhan 430000
  • Received:2024-01-29 Revised:2024-03-24 Online:2024-08-25 Published:2024-08-23
  • Contact: Jie Hu E-mail:auto_hj@163.com

摘要:

本文为适应物流自动驾驶轻型货车载荷显著变化的特点,满足低计算负载和高稳定性等需求,提出了一种基于LPV-MPC的路径跟踪控制方法。首先构建线性参变模型,并制定该模型与调度变量-速度和载荷的非线性映射规则,旨在提高行车稳定性并降低系统对参数的灵敏度;然后在滚动优化部分,为解决规划层提供的离散轨迹点稠密程度不匹配控制模块预测层需求的问题,设计了一种轨迹重构的方法,构建了适应预测层时域尺度的平滑轨迹序列,能有效降低预测状态与真实状态的偏差;同时采用了多点状态量偏差预测方式代替单点偏差预测,充分利用了参考轨迹信息从而提高跟踪精度;最后通过联合仿真和实车试验,验证了所提出控制策略的有效性。

关键词: 自动驾驶轻型货车, 路径跟踪, LPV-MPC, 轨迹重构

Abstract:

For the characteristic of significant load variation in urban logistics autonomous light trucks and to meet the needs of low computational load and high stability, a path-tracking control method based on Linear Parameter-Varying Model Predictive Control (LPV-MPC) is proposed in this paper. Firstly, a linear parameter-varying model is constructed, and nonlinear mapping rules between the model and scheduling variables - speed and load - are established, to improve driving stability and mitigating system sensitivity to parameter fluctuations. Then, for the rolling optimization stage, a trajectory reconstruction method is designed to reconcile disparities between the discrete trajectory points provided by the planning layer and the demand of the control module's prediction layer. A smooth trajectory sequence tailored to the temporal scale of the prediction layer is constructed to effectively decrease the deviation between predicted and actual states. In addition, a multi-point state deviation prediction method is used instead of the traditional single-point prediction, fully leveraging reference trajectory information for improved tracking accuracy. Finally, the effectiveness of the proposed control strategy is verified through combined simulation and empirical vehicle tests.

Key words: autonomous light truck, path tracking, LPV-MPC, trajectory reconstruction