汽车工程 ›› 2022, Vol. 44 ›› Issue (12): 1844-1855.doi: 10.19562/j.chinasae.qcgc.2022.12.006

所属专题: 智能网联汽车技术专题-规划&控制2022年

• • 上一篇    下一篇

考虑系统复杂扰动的智能车模型预测路径跟踪控制

关龙新1,2,顾祖飞2,张超2,王爱春2,彭晨若2,江会华2,吴晓建1,2()   

  1. 1.南昌大学先进制造学院,南昌  330031
    2.江铃汽车股份有限公司,南昌  330001
  • 收稿日期:2022-07-31 出版日期:2022-12-25 发布日期:2022-12-22
  • 通讯作者: 吴晓建 E-mail:saintwu520@163.com

Model Predictive Path Following Control of Intelligent Vehicles Considering System Complex Disturbances

Longxin Guan1,2,Zufei Gu2,Chao Zhang2,Aichun Wang2,Chenruo Peng2,Huihua Jiang2,Xiaojian Wu1,2()   

  1. 1.School of Advanced Manufacturing,Nanchang University,Nanchang  330031
    2.Jiangling Motors Co. ,Ltd. ,Nanchang  330001
  • Received:2022-07-31 Online:2022-12-25 Published:2022-12-22
  • Contact: Xiaojian Wu E-mail:saintwu520@163.com

摘要:

智能车路径跟踪控制面临系统模型简化、参数不确定、执行器与传感器信号延时及道路曲率变化等干扰,将产生系统扰动误差,导致跟踪精度降低。本文针对性提出一种考虑跟踪系统复杂扰动的模型预测控制方法(model predictive control, MPC),首先以单轨车辆动力学模型为基础建立模型预测跟踪系统,并依据实时规划的路径和速度信息设计预瞄距离动态调整方法,获取最佳预瞄点,以改善智能车底盘执行器与传感器信号延时扰动问题;而后引入扩张状态观测器(extended state observer,ESO)实时估计因简化车辆模型对系统产生的未知扰动量并用于前馈补偿;同时,考虑道路参考曲率变化对系统产生的确定性稳态扰动,设计一种含曲率约束的前馈控制(feed-forward control,FFC)方法用于消除该干扰;最终形成MPC控制器反馈输入、ESO抗干扰补偿输入及FFC前馈输入相叠加的转向角控制律。最后,以某品牌智能车平台在低速园区场景进行了实车测试对比分析,验证了本文所改进的融合扰动补偿的模型预测控制方法具备可行性和优越性。

关键词: 智能车, 路径跟踪, 扰动, 模型预测控制, 扩张状态观测器, 动态预瞄距离, 前馈控制

Abstract:

Intelligent vehicle path tracking control is faced with disturbances such as system model simplification, parameter uncertainty, the delay of actuator and sensor signals, and road curvature changes, which will generate system disturbance errors, resulting in reduced tracking accuracy. A model predictive control (MPC) method that considers the complex disturbance of the tracking system is proposed in this paper. Firstly, a model prediction tracking system is established based on the single-track vehicle dynamics model, and a dynamic adjustment method of the preview distance based on real-time path planning and speed information is designed to obtain the best preview point to improve the delay disturbance of the actuators and sensor signals of the intelligent vehicle chassis. Then, an extended state observer (ESO) is introduced to estimate the unknown disturbance to the system due to the simplified vehicle model in real time and use it for feed-forward compensation. At the same time, considering the steady-state disturbance error caused by the change of the road reference curvature to the system, a feed-forward control (FFC) method with curvature constraints is designed to eliminate this disturbance; and finally the steering angle control law of the superposition of the feedback input of the MPC controller, the ESO anti-interference compensation input and the FFC input is formed. Finally, real vehicle test and comparison analysis are carried out in a low-speed park scene with a certain brand of intelligent vehicle platform, which verifies the feasibility and superiority of the improved MPC method of integrating disturbance compensation.

Key words: intelligent vehicles, path tracking, disturbances, model predictive control, extended state observer, dynamic preview distance, feed-forward control