汽车工程 ›› 2022, Vol. 44 ›› Issue (12): 1856-1865.doi: 10.19562/j.chinasae.qcgc.2022.12.007

所属专题: 智能网联汽车技术专题-规划&控制2022年

• • 上一篇    下一篇

基于IEEE 802.11p的自适应主次窗口退避机制及验证

周兴凯1,窦祖芳1(),杨喜娟2,杨乔礼1   

  1. 1.兰州交通大学自动化与电气工程学院,兰州  730070
    2.兰州交通大学电子与信息工程学院,兰州  730070
  • 收稿日期:2022-06-10 修回日期:2022-07-21 出版日期:2022-12-25 发布日期:2022-12-22
  • 通讯作者: 窦祖芳 E-mail:douzufang@126.com
  • 基金资助:
    国家自然科学基金(72171106);甘肃省自然科学基金(21JR7RA303);甘肃省教育厅:高校创新基金(2021B-105);产业支撑计划项目(2021ZYZC-11)

Backoff Mechanism and Verification of Adaptive Primary and Secondary Windows Based on IEEE 802.11p

Xingkai Zhou1,Zufang Dou1(),Xijuan Yang2,Qiaoli Yang1   

  1. 1.School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou  730070
    2.School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou  730070
  • Received:2022-06-10 Revised:2022-07-21 Online:2022-12-25 Published:2022-12-22
  • Contact: Zufang Dou E-mail:douzufang@126.com

摘要:

在交通密集场景下,考虑到现有的DSRC和C-V2X两种技术都不能保证数据高效传输。本文首先介绍了所采用的车联网网络架构。其次,提出基于自适应主次窗口划分的IEEE 802.11p机制的设计,旨在降低车辆节点的冲突率进而增加数据传输率。再次,通过建立二维Markov模型获得传输时延等性能指标的解析式。最后,对改进机制进行了数值验证。仿真结果表明,与经典机制相比,不管是交通稀疏还是密集场景,改进机制都能获得更好的网络性能。同时,建立时延最小和可靠性最高的多目标优化模型,对提出机制进行优化,以获得均衡的系统性能。

关键词: 主次退避, IEEE 802.11p, 自适应, Markov模型, 多目标优化

Abstract:

In traffic intensive scenarios, the existing DSRC and C-V2X technologies can not ensure efficient data transmission. Firstly, this paper introduces the network architecture of the Internet of vehicles. Secondly, the design of an IEEE 802.11p mechanism based on adaptive primary and secondary window partition is proposed, in order to reduce the collision rate of vehicle nodes and then increase the data transmission rate. Then, by establishing a two-dimensional Markov model, analytical expressions of transmission delay and other performance indexes are obtained. Finally, the improved mechanism is numerically verified. The simulation results show that compared with the classical mechanism, the improved mechanism can obtain better network performance in both sparse and dense traffic scenes. At the same time, a multi-objective optimization model with minimum delay and highest reliability is established to optimize the proposed mechanism so as to obtain balanced system performance.

Key words: primary and secondary backoff windows, IEEE 802.11p, adaptive, Markov model, multi objective optimization