Automotive Engineering ›› 2023, Vol. 45 ›› Issue (4): 541-550.doi: 10.19562/j.chinasae.qcgc.2023.04.002
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Yanyan Chen1,Hai Wang1(),Yingfeng Cai2,Long Chen2,Yicheng Li2
Received:
2022-11-11
Revised:
2022-11-30
Online:
2023-04-25
Published:
2023-04-19
Contact:
Hai Wang
E-mail:wanghai1019@163.com
Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection[J].Automotive Engineering, 2023, 45(4): 541-550.
"
方法 | 行人 | 骑行者 | 轿车 | 货车 | 巴士 | 火车 | 摩托 | 自行车 | mAP@0.5:0.95 (seg) | mAP@0.5:0.95 (box) | FPS |
---|---|---|---|---|---|---|---|---|---|---|---|
Mask R-CNN | 27.6 | 6.3 | 43.9 | 20.8 | 23.1 | 0.0 | 2.0 | 5. 9 | 16.2 | 22.3 | 14.3 |
Cascade Mask | 28.8 | 7.3 | 45.4 | 24.7 | 27.1 | 0.0 | 9.9 | 25.9 | 13.2 | ||
GCNet | 4.35 | 22.4 | 20.9 | 0.0 | 5.09 | 4.16 | 16.1 | 22.4 | 13.9 | ||
YoLACT | 15.4 | 18.5 | 20.0 | ||||||||
Solov2-Lite | 19.2 | 35.9 | 19.9 | 26.8 | 0.0 | 15.6 | 5.4 | 16.2 | |||
baseline | 16.3 | 5.3 | 38.4 | 26.2 | 0.0 | 22.4 | 3.9 | 17.2 | 18.1 | 38.56 | |
Ours | 19.2 | 4.0 | 43.3 | 30.8 | 26.8 | 11.9 | 16.1 | 3.3 | 19.4 | 23.3 | 27.7 |
1 | 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28: 1152-1164. |
FAN Lili, ZHAO Hongwei, ZHAO Haoyu, et al. Survey of target detection based ondeep convolutional neural networks[J]. Optics and Precision Engineering, 2020,28: 1152-1164. | |
2 | GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation [J]. arXiv:170406857. 2017. |
3 | 王海, 蔡柏湘, 蔡英凤, 等. 基于语义分割网络的路面积水与湿滑区域检测[J]. 汽车工程, 2021, 43: 485-491. |
WANG Hai, CAI Baixiang, CAI Yingfeng, et al. Detection of water⁃covered and wet areas on road pavement based on semantic segmentation network[J]. Automotive Engineering, 2021, 43: 485-491. | |
4 | CAI Y, DAI L, WANG H, et al. Pedestrian motion trajectory prediction in intelligent driving from far shot first-person perspective video [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 5298-5313. |
5 | GU W, BAI S, KONG L. A review on 2D instance segmentation based on deep neural networks [J]. Image Vision Computing, 2022: 104401. |
6 | 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2021, 17: 16-31. |
SU Li, SUN Yuxin, YUAN Shouzheng. A survey of instance sementation research based on deep learning[J].CAAI Transactions on Intelligent Systems, 2021,17: 16-31. | |
7 | GAO N, SHAN Y, WANG Y, et al. SSAP: single-shot instance segmentation with affinity pyramid[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, F, 2019. |
8 | DE BRABANDERE B, NEVEN D, VAN GOOL L. Semantic instance segmentation with a discriminative loss function [J]. arXiv:170802551. 2017. |
9 | LIU S, JIA J, FIDLER S, et al. SGN: sequential grouping networks for instance segmentation[C]. Proceedings of the IEEE International Conference on Computer Vision, F, 2017. |
10 | XIE E, SUN P, SONG X, et al. PolarMask: single shot instance segmentation with polar representation[C]. Proceedings of the Proceedings of the IEEE/CVF conference On Computer Vision And Pattern Recognition, F, 2020. |
11 | DONG B, ZENG F, WANG T, et al. SOLQ: segmenting objects by learning queries [J]. Advances in Neural Information Processing Systems, 2021, 34. |
12 | WANG X, KONG T, SHEN C, et al. SOLO: segmenting objects by locations[C]. Proceedings of the European Conference on Computer Vision, F, 2020. Springer. |
13 | WANG X, ZHANG R, KONG T, et al. Solov2: dynamic and fast instance segmentation [J]. Advances in Neural Information Processing Systems, 2020, 33: 17721-17732. |
14 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, F, 2019. |
15 | REDMON J, FARHADI A. Yolov3: an incremental improvement [J]. arXiv: 180402767 2018. |
16 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M J A P A. Yolov4: optimal speed and accuracy of object detection [J]. arXiv:200410934. 2020. |
17 | 蔡英凤, 张田田, 王海, 等. 基于实例分割和自适应透视变换算法的多车道线检测 [J]. 东南大学学报(自然科学版), 2020, 50: 775-781. |
CAI Yingfeng, ZHANG Tiantian,WANG Hai, et al. Multi-lane detection based on instance segmentation and adaptive perspective transformation[J]. Journal of Southeast University (Natural Science Edition), 2020,50:775-781. | |
18 | TIAN Z, SHEN C, CHEN H. Conditional convolutions for instance segmentation[C]. Proceedings of the European Conference on Computer Vision, F, 2020. Springer. |
19 | HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision (ICCV), F March 01, 2017, 2017. |
20 | HUANG Z, HUANG L, GONG Y, et al. Mask scoring R-CNN[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2019. |
21 | KIRILLOV A, WU Y, HE K, et al. PointRend: image segmentation as rendering[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
22 | BOLYA D, ZHOU C, XIAO F, et al. YOLACT: real-time instance segmentation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, F, 2019. |
23 | BOLYA D, ZHOU C, XIAO F, et al. YOLACT++: better real-time instance segmentation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2020. |
24 | HU J, CAO L, LU Y, et al. ISTR: end-to-end instance segmentation with transformers [J]. arXiv:210500637. 2021. |
25 | FANG Y, YANG S, WANG X, et al. Instances as queries[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, F, 2021. |
26 | GU W, BAI S, KONG L. A review on 2D instance segmentation based on deep neural networks [J]. Image and Vision Computing, 2022, 120: 104401. |
27 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28. |
28 | CAI Z, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2019, 43(5): 1483-1498. |
29 | CHEN H, SUN K, TIAN Z, et al. BlendMask: top-down meets bottom-up for instance segmentation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
30 | DU W, XIANG Z, CHEN S, et al. Real-time instance segmentation with discriminative orientation maps[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, F, 2021. |
31 | LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2017. |
32 | LIU J J, HOU Q, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F, 2020. |
33 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2018. |
34 | CAI Y, LUAN T, GAO H, et al. YOLOv4-5D: an effective and efficient object detector for autonomous driving[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13. |
35 | YU F, XIAN W, CHEN Y, et al. BDD100K: a diverse driving video database with scalable annotation tooling [J]. arXiv:1805.0487,201. |
36 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, F, 2017. |
37 | JAIN A K. Data clustering: 50 years beyond K-means [J]. Pattern Recognition Letters, 2010, 31(8): 651-66. |
38 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, F, 2009. |
39 | CAO Y, XU J, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, F, 2019. |
[1] | Xinke Fu,Yingfeng Cai,Long Chen,Hai Wang,Qingchao Liu. Decision-Making for Autonomous Driving in Uncertain Environment [J]. Automotive Engineering, 2024, 46(2): 211-221. |
[2] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[3] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[4] | Cheng Lin, Bowen Wang, Lü Peiyuan, Xinle Gong, Xiao Yu. Research on Motion Planning and Cooperative Control for Autonomous Vehicles with Lane Change Gaming Maneuvers Under the Curved Road [J]. Automotive Engineering, 2023, 45(7): 1099-1111. |
[5] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[6] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[7] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[8] | Zhifei Wu,Shoubiao Li. Lane Detection Algorithm Based on Instance Segmentation [J]. Automotive Engineering, 2023, 45(2): 263-272. |
[9] | Lü Ying,Xu Qi,Qiuzheng Liu,Xinyu Wang,Guoying Chen. Path Tracking Control Method with Steering Lag for Autonomous Vehicles [J]. Automotive Engineering, 2023, 45(12): 2234-2241. |
[10] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[11] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[12] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |
[13] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[14] | Jie Hu,Yuanjie Li,Hao Geng,Huangzheng Geng,Xiong Guo,Hongwei Yi. Construction of Vehicle Fault Knowledge Graph Based on Deep Learning [J]. Automotive Engineering, 2023, 45(1): 52-60. |
[15] | Fengchong Lan,Yingjie Liu,Jiqing Chen,Zhaolin Liu. Study on Motion Planning of Autonomous Vehicles in Cut-in Scenes Based on Dynamic Game Algorithm [J]. Automotive Engineering, 2023, 45(1): 9-19. |