汽车工程 ›› 2020, Vol. 42 ›› Issue (11): 1513-1521.doi: 10.19562/j.chinasae.qcgc.2020.11.009

• • 上一篇    下一篇

四轮轮毂电机独立驱动电动汽车轨迹跟踪与横摆稳定性协调控制研究*

张雷, 赵宪华, 王震坡   

  1. 北京理工大学,电动车辆国家工程实验室,北京 100081
  • 收稿日期:2019-12-02 出版日期:2020-11-25 发布日期:2021-01-25
  • 通讯作者: 王震坡,教授,博士,E-mail:wangzhenpo@bit.edu.cn。
  • 基金资助:
    *国家重点研发计划(2017YFB0103600)资助

Study on Coordinated Control of Trajectory Tracking and Yaw Stability for Autonomous Four-wheel-independent-driving Electric Vehicles

Zhang Lei, Zhao Xianhua, Wang Zhenpo   

  1. Beijing Institute of Technology, National Engineering Laboratory for Electric Vehicles, Beijing 100081
  • Received:2019-12-02 Online:2020-11-25 Published:2021-01-25

摘要: 为了提高智能汽车在高速、低附着等极限工况下轨迹跟踪的精度和车辆稳定性,本文中依托四轮轮毂电机独立驱动电动汽车平台,提出了一种基于分层架构的轨迹跟踪与直接横摆力矩协调控制策略,包含上层控制器和下层控制器。首先,上层控制器基于3自由度车辆动力学模型建立了模型预测控制器,考虑多种非线性约束,利用理论分析优化预测时域和控制时域,并通过优化求解得到前轮转角和附加横摆力矩。然后,下层控制器以轮胎负荷率最小化为目标函数进行车轮纵向力优化分配,考虑到控制策略实时性要求,运用有效集算法求解最佳转矩分配。最后,采用CarSim & Simulink联合仿真,在不同车速与不同附着条件下验证了所设计的轨迹跟踪与横摆稳定性协调控制器的有效性。

关键词: 智能汽车, 四轮轮毂电机独立驱动电动汽车, 轨迹跟踪, 横摆稳定性控制

Abstract: In order to improve trajectory tracking precision and dynamics stability of intelligent vehicles under extreme conditions such as high speed and low adhesion conditions, this paper proposes a coordinated control strategy of trajectory tracking and direct yaw-moment based on the layered control structure for autonomous four-wheel-independent-driving electric vehicles, which consists of an upper and a lower controller. Firstly, in the upper controller, a model predictive controller is developed based on the three-degree-of-freedom (3-DOF) vehicle dynamics model considering multiple nonlinear constraints while optimizing the prediction time domain and control time domain through theoretical analysis. The steering angle of the front wheels and the additional yaw-moment are derived via optimization derivation. Then, in the lower controller, the optimal distribution of wheel longitudinal force is realized with the objective of minimizing the load rate of tires. Considering the real-time requirement of the control strategy, the effective set algorithm is adopted for the optimal torque distribution. Finally, the effectiveness of the proposed control scheme of coordinated controller of trajectory tracking and yaw stability is verified under different vehicle speeds and road adhesion coefficients in the CarSim-Simulink joint simulation.

Key words: intelligent vehicles, four-wheel-independent-driving electric vehicles, trajectory tracking, yaw stability control