1 |
CAI Y, DAI L, WANG H, et al. DLnet with training task conversion stream for precise semantic segmentation in actual traffic scene[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(11): 6443-6457.
|
2 |
ZHOU J, OLOFSSON B, FRISK E. Interaction-aware motion planning for autonomous vehicles with multi-modal obstacle uncertainty predictions[J]. IEEE Transactions on Intelligent Vehicles, 2023.
|
3 |
胡启慧,蔡英凤,王海,等. 基于层次图注意的异构多目标轨迹预测方法[J]. 汽车工程, 2023, 45(8): 1448-1456.
|
|
HU Qihui, CAI Yingfeng, WANG Hai, et al. Heterogeneous multi-object trajectory prediction method based on hierarchical graph attention[J]. Automotive Engineering, 2023, 45(8): 1448-1456.
|
4 |
汪梓豪,蔡英凤,王海,等. 基于单目视觉运动估计的周边多目标轨迹预测方法[J]. 汽车工程, 2022, 44(9): 1318-1326.
|
|
WANG Zihao,CAI Yingfeng,WANG Hai, et al. Surrounding multi-target trajectory prediction method based on monocular visual motion estimation[J]. Automotive Engineering, 2022, 44(9): 1318-1326.
|
5 |
高镇海, 鲍明喜, 高菲,等. 基于LSTM概率多模态预期轨迹预测方法[J]. 汽车工程, 2023, 45(7): 1145-1152.
|
|
GAO Zhenhai, BAO Mingxi, GAO Fei, et al. The method of probabilistic multi-modal expected trajectory prediction based on LSTM[J]. Automotive Engineering, 2023, 45(7): 1145-1152.
|
6 |
DANIELSSON S, PETERSSON L, EIDEHALL A. Monte Carlo based threat assessment: analysis and improvements[C]. 2007 IEEE Intelligent Vehicles Symposium. IEEE, 2007: 233-238.
|
7 |
LEFÈVRE S, LAUGIER C, IBAÑEZ-GUZMÁN J. Exploiting map information for driver intention estimation at road intersections[C]. 2011 IEEE Intelligent Vehicles Symposium (iv). IEEE, 2011: 583-588.
|
8 |
FIRL J, STÜBING H, HUSS S A, et al. Predictive maneuver evaluation for enhancement of car-to-x mobility data[C]. 2012 IEEE Intelligent Vehicles Symposium. IEEE, 2012: 558-564.
|
9 |
AOUDE G S, DESARAJU V R, STEPHENS L H, et al. Behavior classification algorithms at intersections and validation using naturalistic data[C]. 2011 IEEE Intelligent Vehicles Symposium (iv). IEEE, 2011: 601-606.
|
10 |
MORRIS B T, TRIVEDI M M. Trajectory learning for activity understanding: unsupervised, multilevel, and long-term adaptive approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2287-2301.
|
11 |
LI Z, WANG B, GONG J, et al. Development and evaluation of two learning-based personalized driver models for pure pursuit path-tracking behaviors[C]. 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018: 79-84.
|
12 |
CHANDRA R, BHATTACHARYA U, BERA A, et al. Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8483-8492.
|
13 |
DIEHL F, BRUNNER T, LE M T, et al. Graph neural networks for modelling traffic participant interaction[C]. 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019: 695-701.
|
14 |
连静,李硕贤,刘一荻,等. 基于车道目标引导的车辆轨迹预测[J]. 汽车工程, 2023, 45(8): 1353-1361.
|
|
LIAN Jing, LI Shuoxian, LIU Yidi, et al. Goal supervised attention network for vehicle trajectory prediction[J]. Automotive Engineering, 2023, 45(8): 1353-1361.
|
15 |
CHAI Y, SAPP B, BANSAL M, et al. Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction[J]. arXiv preprint arXiv:, 2019.
|
16 |
HONG J, SAPP B, PHILBIN J. Rules of the road: predicting driving behavior with a convolutional model of semantic interactions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8454-8462.
|
17 |
GAO J, SUN C, ZHAO H, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11525-11533.
|
18 |
LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]. Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part II 16. Springer International Publishing, 2020: 541-556.
|
19 |
LI X, YING X, CHUAH M C. Grip++: enhanced graph-based interaction-aware trajectory prediction for autonomous driving[J]. arXiv preprint arXiv:, 2019.
|
20 |
CHANG M F, LAMBERT J, SANGKLOY P, et al. Argoverse: 3D tracking and forecasting with rich maps[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8748-8757.
|
21 |
ZHAO H, GAO J, LAN T, et al. TNT: target-driven trajectory prediction[J]. arXiv preprint arXiv:, 2020.
|
22 |
GILLES T, SABATINI S, TSISHKOU D, et al. HOME: heatmap output for future motion estimation[J]. arXiv preprint arXiv:, 2021.
|
23 |
LIU Y, ZHANG J, FANG L, et al. Multimodal motion prediction with stacked transformers[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 7573-7582.
|
24 |
BHATTACHARYYA P, HUANG C, CZARNECKI K. SSL-Lanes: self-supervised learning for motion forecasting in autonomous driving[C]. Conference on Robot Learning. PMLR, 2023: 1793-1805.
|
25 |
PARK D, RYU H, YANG Y, et al. Leveraging future relationship reasoning for vehicle trajectory prediction[J]. arXiv preprint arXiv:, 2023.
|