汽车工程 ›› 2024, Vol. 46 ›› Issue (12): 2314-2328.doi: 10.19562/j.chinasae.qcgc.2024.12.017
收稿日期:
2024-04-14
修回日期:
2024-06-27
出版日期:
2024-12-25
发布日期:
2024-12-20
通讯作者:
王亚雄,张久俊
E-mail:yxwang@fzu.edu.cn;jiujun.zhang@i.shu.edu.cn
基金资助:
Yaxiong Wang1(),Yiying Fan1,Kai Ou1,Zhongbao Wei2,Jiujun Zhang3(
)
Received:
2024-04-14
Revised:
2024-06-27
Online:
2024-12-25
Published:
2024-12-20
Contact:
Yaxiong Wang,Jiujun Zhang
E-mail:yxwang@fzu.edu.cn;jiujun.zhang@i.shu.edu.cn
摘要:
能量管理决定燃料电池汽车(fuel cell vehicles,FCV)动力系统的功率分配,影响FCV的经济性与耐久性等。汽车运行工况复杂多变,能量管理可通过融合交通信息提升FCV动力系统的输出性能。本文总结了FCV能量管理的优化目标,分析了传统的规则式与优化式的能量管理策略;以车速、交通状况等交通信息的分析及预测为重点,综述马尔可夫、人工智能等预测方法,总结融合交通信息的FCV能量管理策略的研究进展;最后,提出融合交通信息的FCV能量管理发展方向。
王亚雄,范依莹,欧凯,魏中宝,张久俊. 融合交通信息的燃料电池汽车能量管理研究进展[J]. 汽车工程, 2024, 46(12): 2314-2328.
Yaxiong Wang,Yiying Fan,Kai Ou,Zhongbao Wei,Jiujun Zhang. Research Progress on Traffic Information-Integrated Energy Management for Fuel Cell Vehicles[J]. Automotive Engineering, 2024, 46(12): 2314-2328.
表1
优化算法对比"
算法 | 实现方式 | 优缺点 | 文献 |
---|---|---|---|
DP | 离散化处理问题,将多阶段过程转化成一系列子优化问题,逐段求取最优解 | 求解结果全局最优,但须提前了解全局工况,计算量大 | [ |
PMP | 引入协态变量约束系统状态变量SOC的变化,通过最小化每个时刻的哈密顿函数获取最优控制动作 | 优化性能接近全局最优,且计算量小于DP;但计算精度受初始协态变量影响;须提前了解全局工况 | [ |
凸优化 | 在最小化的要求下,将FCV能量管理问题转换为凸函数形式求解 | 局部最优解即全局最优解,求解简单,计算效率高;但目标函数必须凸函数,约束条件必须满足凸形式 | [ |
ECMS | 利用等效因子转化为等效氢消耗模型,构建瞬时等效成本函数,将全局优化问题转化为瞬时优化问题 | 计算量小,实时性较好,操作简单,可有效控制SOC工作范围;但等效因子的设置决定控制策略的优化效果 | [ |
ESM | 通过搜索燃料电池性能的变化来寻找最大功率和最大效率点 | 经济性全局最优,更适用于实际汽车;但优化目标单一 | [ |
MPC | 将全局优化问题转化成预测范围内的局部优化问题,在每一个采样时刻搜索有限时域内的最佳控制动作 | 实时性很强,可实现结果局部最优;但对预测模型的精度要求较高 | [ |
表2
预测方法综合分析"
方法名称 | 子分类 | 优点 | 缺点 | 文献 |
---|---|---|---|---|
马尔可夫 | 车速预测 | 1.适用于随机建模 2.在相似的行驶条件下预测精度较高 | 1.对快速变化的行驶条件预测精度较低 2.对不符合马尔可夫特性的过程预测性能差 3.依赖于历史数据库 | [ |
功率预测 | [ | |||
驾驶模式和工况识别 | [ | |||
人工智能 方法 | 驾驶模式和工况识别 | 1.可解决非线性多变量问题 2.学习能力强 | 1.训练时间长 2.构建预测模型困难,模型复杂程度难以掌握,易引起过拟合和难收敛等问题 3.依赖于历史数据库 | [86-87] |
坡度预测 | [ | |||
车速预测 | [85] | |||
远程信息 处理技术 | 交通灯信号及交通 拥挤程度 | 1.可提供更准确的实时驾驶数据 2.具有在高峰时间和交通拥堵情况下的应用潜力 | 1.计算量大 2.受到交通智能控制系统发展的限制 | [88,90] |
坡度预测 | [ |
1 | 刘青山, 兰凤崇, 陈吉清, 等. 制氢方法的评价及对氢燃料电池汽车推广的影响研究[J].中国公路学报, 2022, 35(11): 295-309. |
LIU Q S, LAN F C, CHEN J Q, et al. Evaluation of hydrogen production methods and their influence on the promotion of hydrogen fuel cell vehicles[J]. China Journal of Highway and Transport, 2022, 35(11): 295-309. | |
2 | 陈家一, 高帷韬, 贾璐, 等. 燃料电池汽车动力系统及能量管理策略研究进展[J].中南大学学报(自然科学版), 2024, 55(1): 80-92. |
CHEN J Y, GAO W T, JIA L, et al. Research progress on powertrain and energy management strategy of fuel cell vehicle[J]. Journal of Central South University(Science and Technology), 2024, 55(1): 80-92. | |
3 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J].化工进展, 2022, 41(3): 1539-1555. |
GAO W T, LEI Y J, ZHAN X, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
4 | 张炳力, 赵韩, 吴迪, 等. 基于小波变换的燃料电池混合动力系统多能源管理策略研究[J].汽车工程, 2008, 30(10): 914-917,926. |
ZHAO B L, ZHAO H, WU D, et al. A study on the multi-management strategy for fuel cell hybrid powertrain based on wavelet-transform[J]. Automotive Engineering, 2008, 30(10): 914-917,926. | |
5 | HU Z Y, LI J Q, XU L F, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles[J]. Energy Conversion and Management, 2016, 129: 108-121. |
6 | LIU Y G, LIU J J, ZHANG Y J, et al. Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization[J]. Energy, 2020, 207. |
7 | YUAN H B, ZOU W J, JUNG S, et al. Optimized rule-based energy management for a polymer electrolyte membrane fuel cell/battery hybrid power system using a genetic algorithm[J]. International Journal of Hydrogen Energy, 2022, 47(12): 7932-7948. |
8 | TENG T, ZHANG X, DONG H, et al. A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20293-20303. |
9 | KELOUWANI S, HENAO N, AGBOSSOU K, et al. Two-layer energy-management architecture for a fuel cell HEV using road trip information[J]. IEEE Transactions on Vehicular Technology, 2012, 61(9): 3851-3864. |
10 | ZENG T, ZHANG C Z, ZHANG Y Y, et al. Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle[J]. Energy, 2021, 227. |
11 | TAO F Z, FU Z G, GONG H X, et al. Twin delayed deep deterministic policy gradient based energy management strategy for fuel cell/battery/ultracapacitor hybrid electric vehicles considering predicted terrain information[J]. Energy, 2023, 283. |
12 | SHEN D, LIM C C, SHI P, et al. Energy management of fuel cell hybrid vehicle based on partially observable markov decision process[J]. IEEE Transactions on Control Systems Technology, 2020, 28(2): 318-330. |
13 | QUAN S W, WANG Y X, XIAO X L, et al. Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation[J]. Applied Energy, 2021, 304. |
14 | SONG K, CHEN H, WEN P M, et al. A comprehensive evaluation framework to evaluate energy management strategies of fuel cell electric vehicles[J]. Electrochimica Acta, 2018, 292: 960-973. |
15 | LÜ X Q, QU Y, WANG Y D, et al. A comprehensive review on hybrid power system for PEMFC-HEV: issues and strategies[J]. Energy Conversion and Management, 2018, 171: 1273-1291. |
16 | ZHOU D M, AL-DURRA A, GAO F, et al. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[J]. Journal of Power Sources, 2017, 366: 278-291. |
17 | 王亚雄, 王轲轲, 钟顺彬, 等. 面向耐久性提升的车用燃料电池系统电控技术研究进展[J].汽车工程, 2022, 44(4): 545-559. |
WANG Y X, WANG K K, ZHONG S B, et al. Research progress on durability enhancement-oriented electric control technology of automotive fuel cell system[J]. Automotive Engineering, 2022, 44(4): 545-559. | |
18 | ZHANG L, HU X S, WANG Z P, et al. A review of supercapacitor modeling, estimation, and applications: a control/management perspective[J]. Renewable & Sustainable Energy Reviews, 2018, 81: 1868-1878. |
19 | PEI P C, CHANG Q F, TANG T. A quick evaluating method for automotive fuel cell lifetime[J]. International Journal of Hydrogen Energy, 2008, 33(14): 3829-3836. |
20 | SONG K, WANG X D, LI F Q, et al. Pontryagin's minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability[J]. Energy, 2020, 205. |
21 | 纪常伟, 潘帅, 汪硕峰, 等. 动力锂离子电池老化速率影响因素的实验研究[J].北京工业大学学报, 2020, 46(11): 1272-1282. |
JI C W, PAN S, WANG S F, et al. Experimental study on effect factors of aging rate for power lithium-ion batteries[J]. Journal of Beijing University of Technology, 2020, 46(11): 1272-1282. | |
22 | HU X S, ZOU C F, TANG X L, et al. Cost-optimal energy management of hybrid electric vehicles using fuel cell/battery health-aware predictive control[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 382-392. |
23 | DAVIS K, HAYES J G. Fuel cell vehicle energy management strategy based on the cost of ownership[J]. Iet Electrical Systems in Transportation, 2019, 9(4): 226-236. |
24 | 宋大凤, 雷宗坤, 曾小华, 等. 燃料电池混合动力系统多目标优化方法[J].湖南大学学报(自然科学版), 2019, 46(10): 46-53. |
SONG D F, LEI Z K, ZENG X H, et al. Multi-objective optimization method of fuel cell hybrid energy system[J]. Journal of Hunan University(Natural Sciences), 2019, 46(10): 46-53. | |
25 | LI G Q, GöRGES D. Ecological adaptive cruise control and energy management strategy for hybrid electric vehicles based on heuristic dynamic programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3526-3535. |
26 | ZHU L L, TAO F Z, FU Z M, et al. Multiobjective optimization of safety, comfort, fuel economy, and power sources durability for fchev in car-following scenarios[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 1797-1808. |
27 | 祝怀南. 燃料电池汽车建模与驾驶性仿真方法研究[D]. 长春: 吉林大学, 2021. |
ZHU H N. Research on modeling and driveability simulation methods of fuel cell vehicle[D]. Changchun: Jilin University, 2021. | |
28 | ZHOU Y, RAVEY A, PERA M C. A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2019, 412: 480-495. |
29 | 张风奇, 胡晓松, 许康辉, 等. 混合动力汽车模型预测能量管理研究现状与展望[J].机械工程学报, 2019, 55(10): 86-108. |
ZHANG F Q, HU X S, XU K H, et al. Current status and prospects for model predictive energy management in hybrid electric vehicles[J]. Journal of Mechanical Engineering, 2019, 55(10): 86-108. | |
30 | LI Z H, KHAJEPOUR A, SONG J C. A comprehensive review of the key technologies for pure electric vehicles[J]. Energy, 2019, 182: 824-839. |
31 | LU X Q, WU Y B, LIAN J, et al. Energy management of hybrid electric vehicles: a review of energy optimization of fuel cell hybrid power system based on genetic algorithm[J]. Energy Conversion and Management, 2020, 205. |
32 | MEBARKI N, REKIOUA T, MOKRANI Z, et al. PEM fuel cell/ battery storage system supplying electric vehicle[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20993-21005. |
33 | YUAN X H, YAN G D, LI H T, et al. Research on energy management strategy of fuel cell-battery-supercapacitor passenger vehicle[J]. Energy Reports, 2022, 8: 1339-1349. |
34 | LACHHAB I, KRICHEN L. An improved energy management strategy for FC/UC hybrid electric vehicles propelled by motor-wheels[J]. International Journal of Hydrogen Energy, 2014, 39(1): 571-581. |
35 | LI Q, YANG H Q, HAN Y, et al. A state machine strategy based on droop control for an energy management system of PEMFC-battery-supercapacitor hybrid tramway[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16148-16159. |
36 | WEYERS C, BOCKLISCH T. Simulation-based investigation of energy management concepts for fuel cell - battery - hybrid energy storage systems in mobile applications[J]. 12th International Renewable Energy Storage Conference, Ires 2018, 2018, 155: 295-308. |
37 | 赵秀春, 郭戈. 混合动力电动汽车能量管理策略研究综述[J].自动化学报, 2016, 42(3): 321-334. |
ZHAO X C, GUO G. Survey on energy management strategies for hybrid electric vehicles[J]. Acta Automatica Sinica, 2016, 42(3): 321-334. | |
38 | 王骞, 李顶根, 苗华春. 基于模糊逻辑控制的燃料电池汽车能量管理控制策略研究[J].汽车工程, 2019, 41(12): 1347-1355. |
WANG Q, LI D G, MIAO H C. Research on energy management strategy of fuel cell vehicle based on fuzzy logic control[J]. Automotive Engineering, 2019, 41(12): 1347-1355. | |
39 | RYU J, PARK Y, SUNWOO M. Electric powertrain modeling of a fuel cell hybrid electric vehicle and development of a power distribution algorithm based on driving mode recognition[J]. Journal of Power Sources, 2010, 195(17): 5735-5748. |
40 | FU Z M, ZHU L L, TAO F Z, et al. Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8875-8886. |
41 | ZHANG R, TAO J L, ZHOU H Y. Fuzzy optimal energy management for fuel cell and supercapacitor systems using neural network based driving pattern recognition[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 45-57. |
42 | SONG K, LI F Q, HU X, et al. Multi-mode energy management strategy for fuel cell electric vehicles based on driving pattern identification using learning vector quantization neural network algorithm[J]. Journal of Power Sources, 2018, 389: 230-239. |
43 | ZHOU W, YANG L, CAI Y S, et al. Dynamic programming for new energy vehicles based on their work modes part II: fuel cell electric vehicles[J]. Journal of Power Sources, 2018, 407: 92-104. |
44 | XU L, OUYANG M, LI J, et al. Application of Pontryagin's Minimal Principle to the energy management strategy of plugin fuel cell electric vehicles[J]. International Journal of Hydrogen Energy, 2013, 38(24): 10104-10115. |
45 | 王亚雄, 余庆港, 王薛超, 等. 考虑性能衰退的燃料电池汽车自适应优化能量管理策略[J].交通运输工程学报, 2022, 22(1): 190-204. |
WANG Y X, YU Q G, WANG X C, et al. Adaptive optimal energy management strategy of fuel cell vehicle by considering fuel cell performance degradation[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 190-204. | |
46 | HU X S, MURGOVSKI N, JOHANNESSON L M, et al. Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming[J]. IEEE-Asme Transactions on Mechatronics, 2015, 20(1): 457-468. |
47 | HAN J, PARK Y, KUM D. Optimal adaptation of equivalent factor of equivalent consumption minimization strategy for fuel cell hybrid electric vehicles under active state inequality constraints[J]. Journal of Power Sources, 2014, 267: 491-502. |
48 | WU X H, HU X S, YIN X F, et al. Convex programming energy management and components sizing of a plug-in fuel cell urban logistics vehicle[J]. Journal of Power Sources, 2019, 423: 358-366. |
49 | HOU S Y, GAO J W, ZHANG Y, et al. A comparison study of battery size optimization and an energy management strategy for FCHEVs based on dynamic programming and convex programming[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21858-21872. |
50 | WEI X D, SUN C, REN Q, et al. Application of alternating direction method of multipliers algorithm in energy management of fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2021, 46(50): 25620-25633. |
51 | ZHOU Y, RAVEY A, PéRA M C. Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer[J]. Applied Energy, 2020, 258. |
52 | LI H, RAVEY A, N'DIAYE A, et al. A novel equivalent consumption minimization strategy for hybrid electric vehicle powered by fuel cell, battery and supercapacitor[J]. Journal of Power Sources, 2018, 395: 262-270. |
53 | GAO H Z, WANG Z J, YIN S P, et al. Adaptive real-time optimal energy management strategy based on equivalent factors optimization for hybrid fuel cell system[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4329-4338. |
54 | YANG C, DU S Y, LI L, et al. Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle[J]. Applied Energy, 2017, 203: 883-896. |
55 | ZHOU D M, AL-DURRA A, RAVEY A, et al. Online energy management strategy of fuel cell hybrid electric vehicles: a fractional-order extremum seeking method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6787-6799. |
56 | ZHOU D M, RAVEY A, AL-DURRA A, et al. A comparative study of extremum seeking methods applied to online energy management strategy of fuel cell hybrid electric vehicles[J]. Energy Conversion and Management, 2017, 151: 778-790. |
57 | KANDIDAYENI M, FERNANDEZ A O M, KHALATBARISOLTANI A, et al. An online energy management strategy for a fuel cell/battery vehicle considering the driving pattern and performance drift impacts[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11427-11438. |
58 | HE H W, QUAN S W, SUN F C, et al. Model predictive control with lifetime constraints based energy management strategy for proton exchange membrane fuel cell hybrid power systems[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 9012-9023. |
59 | WANG Y J, LI X Y, WANG L, et al. Multiple-grained velocity prediction and energy management strategy for hybrid propulsion systems[J]. Journal of Energy Storage, 2019, 26. |
60 | HEMI H, GHOUILI J, CHERITI A. Combination of Markov chain and optimal control solved by Pontryagin's Minimum Principle for a fuel cell/supercapacitor vehicle[J]. Energy Conversion and Management, 2015, 91: 387-393. |
61 | 魏小栋, 刘波, 冷江昊, 等. 基于凸优化的燃料电池汽车节能驾驶研究[J].汽车工程, 2022, 44(6): 851-858. |
WEI X D, LIU B, LENG J H, et al. Research on eco-driving of fuel cell vehicles via convex optimization[J]. Automotive Engineering, 2022, 44(6): 851-858. | |
62 | ZHANG W B, LI J Q, XU L F, et al. Optimization for a fuel cell/battery/capacity tram with equivalent consumption minimization strategy[J]. Energy Conversion and Management, 2017, 134: 59-69. |
63 | LI H, RAVEY A, N'DIAYE A, et al. Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation[J]. Energy Conversion and Management, 2019, 192: 133-149. |
64 | SHEN D, LIM C C, SHI P. Robust fuzzy model predictive control for energy management systems in fuel cell vehicles[J]. Control Engineering Practice, 2020, 98. |
65 | LI T Y, LIU H Y, WANG H, et al. Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles[J]. Energy, 2020, 198. |
66 | LI K, ZHOU J, JIA C, et al. Energy sources durability energy management for fuel cell hybrid electric bus based on deep reinforcement learning considering future terrain information[J]. International Journal of Hydrogen Energy, 2024, 52: 821-833. |
67 | LI X Y, WANG Y J, YANG D, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin's Minimal Principle[J]. Journal of Power Sources, 2019, 440. |
68 | SUN Z D, WANG Y J, CHEN Z H, et al. Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric vehicles[J]. Applied Energy, 2020, 267. |
69 | 林歆悠, 叶锦泽, 王召瑞. 融合工况预测的燃料电池汽车里程自适应等效氢耗最小控制策略[J].工程科学学报, 2024, 46(2): 376-384. |
LIN X Y, YE J Z, WANG Z R. Trip distance adaptive equivalent hydrogen consumption minimization strategy for fuel cell electric vehicles integrating driving cycle prediction[J]. Chinese Journal of Engineering, 2024, 46(2): 376-384. | |
70 | LIU Y G, LI J, CHEN Z, et al. Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles[J]. Journal of Power Sources, 2019, 429: 55-66. |
71 | 宋震, 闵德豪, 陈会翠, 等. 基于强化学习和路况信息的燃料电池汽车能量管理策略[J].同济大学学报(自然科学版), 2021, 49(S1): 211-216. |
SONG Z, MIN D H, CHEN H C, et al. Energy management strategy of fuel cell vehicles based on reinforcement learning and traffic information[J]. Journal of Tongji University(Natural Science), 2021, 49(S1): 211-216. | |
72 | 王成, 张财志. 基于智能算法的燃料电池汽车道路坡度估计[J].重庆大学学报, 2021, 44(4): 10-18. |
WANG C, ZHANG C Z. Road grade estimation using intelligent algorithms for fuel cell vehicles[J]. Journal of Chongqing University, 2021, 44(4): 10-18. | |
73 | WEI X D, WANG J Q, SUN C, et al. Guided control for plug-in fuel cell hybrid electric vehicles via vehicle to traffic communication[J]. Energy, 2023, 267. |
74 | YAN M, LI G T, LI M L, et al. Hierarchical predictive energy management of fuel cell buses with launch control integrating traffic information[J]. Energy Conversion and Management, 2022, 256. |
75 | GUO J Q, HE H W, LI J W, et al. Real-time energy management of fuel cell hybrid electric buses: fuel cell engines friendly intersection speed planning[J]. Energy, 2021, 226. |
76 | 周雅夫, 孙雪松, 连静, 等. 基于工况识别的燃料电池公交车能量管理策略[J].哈尔滨工业大学学报, 2023, 55(8): 97-105. |
ZHOU Y F, SUN X S, LIAN J, et al. Energy management strategy of fuel cell bus based on working condition identification[J]. Journal of Harbin Institute of Technology, 2023, 55(8): 97-105. | |
77 | 赵勇, 谢金法, 时佳威, 等. 基于遗传算法优化支持向量机工况识别的燃料电池混合动力汽车能量管理策略[J].科学技术与工程, 2020, 20(14): 5820-5827. |
ZHAO Y, XIE J F, SHI J W, et al. Management strategy of fuel cell hybrid electric vehicle based on GA-SVM condition recognition[J]. Science Technology and Engineering, 2020, 20(14): 5820-5827. | |
78 | ZHOU Y, RAVEY A, PéRA M C. Multi-objective energy management for fuel cell electric vehicles using online-learning enhanced Markov speed predictor[J]. Energy Conversion and Management, 2020, 213. |
79 | SUN H C, FU Z M, TAO F Z, et al. Data-driven reinforcement-learning-based hierarchical energy management strategy for fuel cell/battery/ultracapacitor hybrid electric vehicles[J]. Journal of Power Sources, 2020, 455. |
80 | ZHOU Y, LI H, RAVEY A, et al. An integrated predictive energy management for light-duty range-extended plug-in fuel cell electric vehicle[J]. Journal of Power Sources, 2020, 451. |
81 | LI Y C, PENG J K, HE H W, et al. The study on multi-scale prediction of future driving cycle based on markov chain[J]. 8th International Conference on Applied Energy (ICAE 2016), 2017, 105: 3219-3224. |
82 | HUANG Y J, WANG H, KHAJEPOUR A, et al. Model predictive control power management strategies for HEVs: a review[J]. Journal of Power Sources, 2017, 341: 91-106. |
83 | LIN X Y, WANG Z R, WU J Y. Energy management strategy based on velocity prediction using back propagation neural network for a plug-in fuel cell electric vehicle[J]. International Journal of Energy Research, 2021, 45(2): 2629-2643. |
84 | MUÑOZ P M, CORREA G, GAUDIANO M E, et al. Energy management control design for fuel cell hybrid electric vehicles using neural networks[J]. International Journal of Hydrogen Energy, 2017, 42(48): 28932-28944. |
[1] | 孔维峰,方川,刘继红,李建秋,李飞强,黄圣涛,赵兴旺,石焱,袁殿,徐梁飞,孙鹏,周恩飞,欧阳明高. 基于单片阻抗一致性吹扫的燃料电池低温冷启动策略研究[J]. 汽车工程, 2024, 46(2): 260-268. |
[2] | 刘晋霞,梁志豪,王强,温明星. TTR汽车等效燃油消耗最小的能量管理策略研究[J]. 汽车工程, 2023, 45(2): 285-292. |
[3] | 朱成,刘頔,滕欣余,张国华,于丹,刘沙,胡苧丹. 新能源汽车综合经济性对比分析及预测研究[J]. 汽车工程, 2023, 45(2): 333-340. |
[4] | 姜俊昭,杨文豪,彭彬,郭婷,徐业凯,王国卓. 基于能耗加权策略的燃料电池汽车续驶里程预测[J]. 汽车工程, 2023, 45(12): 2357-2365. |
[5] | 朱仲文,汪鑫,江维海,李丞. 氢燃料电池汽车整车集成式热管理系统研究[J]. 汽车工程, 2023, 45(11): 1991-2000. |
[6] | 齐春阳,宋传学,宋世欣,靳立强,王达,肖峰. 基于逆强化学习的混合动力汽车能量管理策略研究[J]. 汽车工程, 2023, 45(10): 1954-1964. |
[7] | 张智明,潘佳琪,章桐. 燃料电池离心式空压机转子临界转速关键影响因素分析[J]. 汽车工程, 2022, 44(9): 1386-1393. |
[8] | 解少博,屈鹏程,李嘉诚,王惠庆,郎昆. 跟驰场景中网联混合电动货车速度规划和能量管理协同控制的研究[J]. 汽车工程, 2022, 44(8): 1136-1143. |
[9] | 魏小栋,刘波,冷江昊,周星宇,孙超,孙逢春. 基于凸优化的燃料电池汽车节能驾驶研究[J]. 汽车工程, 2022, 44(6): 851-858. |
[10] | 陈勇,魏长银,李晓宇,李彦林,刘彩霞,林霄喆. 融合工况识别的增程式电动汽车模糊能量管理策略研究[J]. 汽车工程, 2022, 44(4): 514-524. |
[11] | 方川,袁殿,邵扬斌,徐梁飞,李飞强,胡尊严,李建秋,周宝,戴威. 面向冬奥示范的新一代燃料电池系统技术突破[J]. 汽车工程, 2022, 44(4): 535-544. |
[12] | 王亚雄,王轲轲,钟顺彬,何洪文,王薛超. 面向耐久性提升的车用燃料电池系统电控技术研究进展[J]. 汽车工程, 2022, 44(4): 545-559. |
[13] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[14] | 张哲,丁海涛,张袅娜,郭孔辉. 智能网联电动汽车经济性巡航速度规划[J]. 汽车工程, 2022, 44(4): 609-616. |
[15] | 李军求,刘吉威,朱超峰. 基于时变底盘构型的混动车辆能量管理研究[J]. 汽车工程, 2022, 44(12): 1866-1876. |
|