汽车工程 ›› 2024, Vol. 46 ›› Issue (5): 852-861.doi: 10.19562/j.chinasae.qcgc.2024.ep.002

• • 上一篇    

热膨胀影响下的电池模组结构优化

邓桦坤1,刘爽1,2,胡林1(),张耿2,Berecibar Maitane3,Hosen Md Sazzad3   

  1. 1.长沙理工大学汽车与机械工程学院,长沙 410000
    2.湖南根轨迹智能科技有限公司,长沙 410000
    3.布鲁塞尔自由大学,布鲁塞尔
  • 收稿日期:2024-01-23 修回日期:2024-04-15 出版日期:2024-05-25 发布日期:2024-05-17
  • 通讯作者: 胡林 E-mail:hulin@csust.edu.cn
  • 基金资助:
    国家杰出青年科学基金(52325211);中瑞国际合作项目(52211530054);湖南省普通高等学校科技创新团队(新能源智能汽车技术)资助

Optimization of Battery Module Structure Considering Thermal Expansion Effects

Huakun Deng1,Shuang Liu1,2,Lin Hu1(),Geng Zhang2,Maitane Berecibar3,Md Sazzad Hosen3   

  1. 1.College of Automotive and Mechanical Engineering,Changsha University of Science & Technology,Changsha 410000
    2.Hunan Root Locus Intelligent Technology Co. ,Ltd. ,Changsha 410000
    3.Vrije Universiteit Brussel,Brussels,Belgium
  • Received:2024-01-23 Revised:2024-04-15 Online:2024-05-25 Published:2024-05-17
  • Contact: Lin Hu E-mail:hulin@csust.edu.cn

摘要:

为了降低电芯膨胀对电池模组结构的危害,针对传统方形电池模组抑制膨胀效果的不足性,本文提出了一种方形电芯呈H形排布的新型电池模组优化结构。首先进行了方形电芯热膨胀实验,获得了电芯温度场和膨胀位移数据,结果表明电芯顶部发热最多,产生的膨胀变形相对于初始厚度增加了0.63 mm。然后基于实验数据依次建立了电芯热膨胀模型、传统方形电池模组和新型电池模组的热膨胀模型,并分析了不同充电倍率下的膨胀。最后通过仿真分析发现新型电池模组端板膨胀力最大降低了36.2%,模组膨胀变形最大减少了21%,端板与侧板应力最大分别减少了61.5%和37.4%。本文的研究能够提高电池模组的可靠性,为电池模组设计提供了新思路和参考依据。

关键词: 电池, 热膨胀, 结构优化, 仿真

Abstract:

To mitigate the detrimental effects of cell expansion on battery module structures, this paper introduces a novel optimization structure for battery modules with H-shaped cell arrangement, aiming to address the limitations in suppressing expansion effects of traditional square battery modules. Firstly, thermal expansion experiments were conducted on square battery cells to acquire temperature fields and expansion displacement data. The results indicated that the top of the battery cells exhibited the highest heat generation, leading to an expansion deformation increase of 0.63 mm compared to the initial thickness. Then, thermal expansion models were established based on experimental data for battery cells, traditional square battery modules, and the newly proposed battery modules, enabling analysis of expansion under various charging rates. Finally, through simulation analysis, it was revealed that the maximum expansion force of the end plate in the new battery module decreased by 36.2%, the maximum expansion deformation of the module decreased by 21%, and the maximum stress on the end plate and side plate decreased by 61.5% and 37.4%, respectively. This study enhances the reliability of battery modules and offers novel insights and guidance for battery module design.

Key words: battery, thermal expansion, structural optimization, simulation