汽车工程 ›› 2025, Vol. 47 ›› Issue (9): 1712-1720.doi: 10.19562/j.chinasae.qcgc.2025.09.007

• • 上一篇    

一种高动态场景下视觉激光融合SLAM系统

周云水1,高澄宇1,黄圣杰1,张润邦1,陈新2,边有钢1,秦洪懋1()   

  1. 1.湖南大学机械与运载工程学院,整车先进设计制造技术全国重点实验室,长沙 410082
    2.北京汽车研究总院有限公司,北京 100021
  • 收稿日期:2024-12-25 修回日期:2025-04-16 出版日期:2025-09-25 发布日期:2025-09-19
  • 通讯作者: 秦洪懋 E-mail:qinhongmao@vip.sina.com
  • 基金资助:
    国家重点研发计划项目(2023YFB2504701)

LiDAR-Visual Fusion SLAM System for High-Dynamic Environment

Yunshui Zhou1,Chengyu Gao1,Shengjie Huang1,Runbang Zhang1,Xin Chen2,Yougang Bian1,Hongmao Qin1()   

  1. 1.College of Mechanical and Vehicle Engineering,Hunan University,State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle,Changsha 410082
    2.Beijing Automotive Technology Center,Beijing 100021
  • Received:2024-12-25 Revised:2025-04-16 Online:2025-09-25 Published:2025-09-19
  • Contact: Hongmao Qin E-mail:qinhongmao@vip.sina.com

摘要:

精确的定位与建图是无人驾驶系统的关键,依赖于单一传感器的同时定位与建图(SLAM)系统很难在不同的环境中稳定运行,特别是高动态场景,容易受动态障碍物影响导致精度下降甚至失效。为此,本文提出了一种激光视觉融合SLAM框架解决高动态场景下高精度建图与定位问题。首先,设计了一种稀疏激光点云与稠密图像融合的里程计,充分利用激光的高精度测距特性和图像信息丰富的特点,提高了里程计精度。针对高动态场景,基于实时图像语义分割网络BiSeNetV2与基于帧间与连续多帧的运动特征检测技术,精确高效地检测图像激光融合后的3D特征点中的动态点,将其从地图中去除,消除动态障碍物的影响。在无人驾驶数据集nuScenes上进行测试,测试结果表明所提出系统大幅提高了动态场景下定位建图的精度和鲁棒性。

关键词: 同时定位与建图, 图像, 激光雷达, 多传感器融合, 高动态场景

Abstract:

Accurate localization and mapping are critical for autonomous driving systems. However, single-sensor Simultaneous Localization and Mapping (SLAM) systems often struggle to operate reliably across different environment, particularly in highly dynamic scenes where dynamic obstacles can degrade accuracy or even cause system failure. Therefore, in this paper a LiDAR-Visual fusion SLAM framework tailored for high-precision mapping and localization problems in dynamic environment is proposed. Firstly, an odometry method that fuses sparse LiDAR point clouds with dense image data is designed, leveraging the high-precision ranging capabilities of LiDAR and the rich information provided by images to enhance odometry accuracy. To address challenges in highly dynamic scenes, based on a real-time image semantic segmentation network, BiSeNetV2, combined with motion feature detection techniques based on inter-frame and multi-frame sequences, the efficient and accurate identification of dynamic points among the 3D feature points obtained from the LiDAR-Visual fusion is realized, which are removed from the map to mitigate the influence of dynamic obstacles. Tests are carried out on the nuScenes autonomous driving dataset, and the results show significant improvement of the proposed system in accuracy and robustness of localization and mapping in dynamic environment.

Key words: SLAM, image, LiDAR, multi-sensor fusion, high-dynamic environment