汽车工程 ›› 2024, Vol. 46 ›› Issue (6): 995-1005.doi: 10.19562/j.chinasae.qcgc.2024.06.006
收稿日期:
2023-12-21
修回日期:
2024-02-22
出版日期:
2024-06-25
发布日期:
2024-06-19
通讯作者:
张洪昌
E-mail:zhc112@126.com
基金资助:
Juan Zeng1,2,Hao Wang1,Bo Xu1,Hongchang Zhang1,2()
Received:
2023-12-21
Revised:
2024-02-22
Online:
2024-06-25
Published:
2024-06-19
Contact:
Hongchang Zhang
E-mail:zhc112@126.com
摘要:
驾驶员危险感知能力对于预防和减少道路交通事故具有重要作用。针对目前研究中危险感知的特征向量表征不统一、算法对实际问题可解释性不足的弊端,通过人为控制的方式,设计了基于危险源、显隐性、强弱危险感知状态3个维度的3×2×2实验方案,实现对危险感知的预定分级;设计配对T检验和Wilcoxon符号秩检验结合的方式实现强弱感知状态下特征差异性的量化比较;建立基于十倍交叉参数调优SVM算法的危险感知状态二分类模型。研究结果表明:驾驶员在强危险感知状态下对危险的反应更主动,倾向于避免危险,而非紧急避险,并保持更低的车速,更倾向油门控制而非制动控制,注视和眼跳行为增加;驾驶员在隐性危险源场景中的操纵力度和频次更强,危险感知与显隐性影响程度及危险源类型有关,摩托车类危险源差异最大,行人类危险源差异最小;在C=1,γ=0.1,选择车头时距、车速标准差、最大制动踏板力、加速度标准差、预减速时间、车速均值、油门开度标准差、跳视次数、注视次数作为特征时,SVM模型具有最好的性能,准确率为89.2%,精准率为90.6%,召回率为87.8%,F1值为0.888。XGBoost模型对弱感知的识别能力低于SVM模型。该研究对于驾驶员危险感知状态的量化评估具有显著的指导意义。
曾娟,王昊,许博,张洪昌. 基于强弱感知设计的驾驶员危险感知状态识别模型研究[J]. 汽车工程, 2024, 46(6): 995-1005.
Juan Zeng,Hao Wang,Bo Xu,Hongchang Zhang. Research on the Driver's Hazard Perception State Recognition Model Based on Strength and Weakness Perception Design[J]. Automotive Engineering, 2024, 46(6): 995-1005.
表3
强弱危险感知状态显著性分析及统计"
指标描述 | 单位 | 弱危险感知状态 | 强危险感知状态 | 正态p | 显著p | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
最大制动踏板力 | daN | 26.925 | 13.414 | 22.217 | 8.273 | 0.004* | 0.000* |
制动踏板力标准差 | daN | 7.851 | 4.941 | 7.417 | 2.843 | 0.094 | 0.353 |
油门开度标准差 | 0.055 | 0.038 | 0.081 | 0.043 | 0.113 | 0.000* | |
转向盘转角标准差 | (°)/s | 1.990 | 7.053 | 1.672 | 3.698 | 0.000* | 0.577 |
预减速时间 | s | 0.800 | 1.468 | 3.226 | 3.157 | 0.000* | 0.000* |
车头时距 | s | 0.837 | 1.567 | 3.566 | 2.170 | 0.000* | 0.000* |
车速均值 | m/s | 16.331 | 3.778 | 12.657 | 2.749 | 0.463 | 0.000* |
车速标准差 | m/s | 2.430 | 2.317 | 4.033 | 1.799 | 0.230 | 0.000* |
加速度均值 | m/s2 | -0.655 | 0.544 | -0.665 | 0.431 | 0.292 | 0.859 |
加速度标准差 | m/s2 | 2.071 | 1.160 | 1.588 | 0.728 | 0.629 | 0.000* |
左眼瞳孔直径变异系数 | 0.055 | 0.022 | 0.054 | 0.024 | 0.032* | 0.434 | |
右眼瞳孔直径变异系数 | 0.056 | 0.022 | 0.055 | 0.022 | 0.065 | 0.635 | |
注视时长百分比 | % | 57.129 | 22.600 | 55.859 | 24.147 | 0.016* | 0.602 |
注视次数 | 次 | 12.242 | 5.508 | 15.325 | 7.023 | 0.144 | 0.000* |
单次注视时长 | s | 0.640 | 0.317 | 0.621 | 0.292 | 0.001* | 0.660 |
跳视次数 | 次 | 34.150 | 17.039 | 41.000 | 19.967 | 0.013* | 0.000* |
单次眼跳时长 | s | 0.046 | 0.010 | 0.047 | 0.011 | 0.019* | 0.152 |
眼动幅度 | 4.212 | 19.725 | 3.743 | 11.418 | 0.000* | 0.171 | |
眼动速度均值 | (°)/s | 28.082 | 12.416 | 27.344 | 12.060 | 0.013 | 0.852 |
眼动速度标准差 | (°)/s | 72.242 | 26.033 | 70.783 | 23.672 | 0.042 | 0.942 |
1 | ARSLANYILMAZ A, SULLINS J. Multi-player online simulated driving game to improve hazard perception[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 61: 188-200. |
2 | CAO S, SAMUEL S, MURZELLO Y, et al. Hazard perception in driving: a systematic literature review[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676: 1-25. |
3 | COYNE P H. Roadcraft: the essential police driver’s handbook[M]. London: The Stationary Office, 1997. |
4 | POLLATSEK A, NARAYANAAN V, PRADHAN A, et al. Using eye movements to evaluate a PC-based risk awareness and perception training program on a driving simulator[J]. Human Factors, 2006, 48(3): 447-464. |
5 | BAILLY B, BELLET T, GOUPIL C. Drivers’ mental representations: experimental study and training perspectives[C]. International Conference on Driver Behaviour and Training, 1st, 2003, Stratford-Upon-Avon, United Kingdom, 2003. |
6 | ALLEN R W, ROSENTHAL T J, PARK G, et al. Experience with a low cost PC-based system for young driver training[C]. International Conference on Driver Behaviour and Training, 1st, 2003, Stratford-Upon-Avon, United Kingdom, 2003. |
7 | MACKENZIE A K, HARRIS J M. Characterizing visual attention during driving and non-driving hazard perception tasks in a simulated environment[C]. Proceedings of the Symposium on Eye Tracking Research and Applications. New York, NY, USA: Association for Computing Machinery, 2014: 127-130. |
8 | TAKAHASHI R, KOBAYASHI M, SASAKI T, et al. Driving simulation test for evaluating hazard perception: elderly driver response characteristics[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 49: 257-270. |
9 | 郭凤香, 熊昌安, 万华森, 等. 风险情境下老年驾驶人行为特性研究[J]. 中国公路学报, 2021, 34(9): 309-321. |
GUO F X, XIONG C A,WAN H S, et al. Behavioral characteristics of older drivers based on risk perception[J]. China Journal of Highway and Transport, 2021, 34(9): 309-321. | |
10 | VLAKVELD W, ROMOSER M R E, MEHRANIAN H, et al. Do crashes and near crashes in simulator-based training enhance novice drivers’ visual search for latent hazards?[J]. Transportation Research Record, 2011, 2265: 153-160. |
11 | 魏田正, 林淼, 李晨新, 等. 基于隐性危险驾驶人感知特性及判别模型研究[J]. 中国安全生产科学技术, 2021, 17(3): 175-181. |
WEI T Z, LIN M, LI C X, et al. Study of driver’s hazard perception and discriminant model based on covert hazard[J]. Journal of Safety Science and Technology, 2021, 17(3): 175-181. | |
12 | 魏田正, 魏雯, 李海梅, 等. 基于XGBoost算法的危险场景驾驶行为模式分析及安全评估[J]. 交通信息与安全, 2022, 40(5): 53-60. |
WEI T Z, WEI W, LI H M, et al. An analysis of driving behavior model and safety assessment under risky scenarios based on an XGBoost algorithm [J]. Journal of Transport Information and Safety, 2022, 40(5): 53-60. | |
13 | 秦雅琴, 张红强, 熊坚, 等. 风险驾驶模拟情境下驾驶人风险感知研究[J]. 交通运输系统工程与信息, 2015, 15(2): 142-148. |
QIN Y Q,ZHANG H Q, XIONG J, et al. Driver’s hazard perception under simulating risk driving scenarios [J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2): 142-148. | |
14 | 谷志朋, 杨京帅, 楚彭子, 等. 基于危险源位置的驾驶人危险感知研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(5): 789-793. |
GU Z P, YANG J S, CHU P Z, et al. Research on driver's hazard perception based on the location of hazard sources [J]. Journal of Wuhan University of Techonlogy(Transportation Science & Engineering), 2020, 44(5): 789-793. | |
15 | 杨京帅, 李秀丽, 任书杭, 等. 驾驶人危险感知影响因素建模与试验[J]. 长安大学学报(自然科学版), 2015, 35(5): 104-110. |
YANG J S, LI X L, REN S H, et al. Modeling and experimental of influencing factors of drivers' hazard perception [J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(5): 104-110. | |
16 | CRUNDALL D. Hazard prediction discriminates between novice and experienced drivers[J]. Accident Analysis & Prevention, 2016, 86: 47-58. |
17 | BRIGGS G F, HOLE G J, LAND M F. Imagery-inducing distraction leads to cognitive tunnelling and deteriorated driving performance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 38: 106-117. |
18 | BROBERG T, DUKIC WILLSTRAND T. Safe mobility for elderly drivers—considerations based on expert and self-assessment[J]. Accident Analysis & Prevention, 2014, 66: 104-113. |
19 | 秦雅琴, 梁锺月, 贾现广, 等. 驾驶人风险感知类型预测模型研究[J]. 安全与环境学报, 2019, 19(4): 1266-1273. |
QIN Y Q, LIANG Z Y, JIA X G, et al. Research on the prediction model of driver's risk perception type [J]. Journal of Safety and Environment, 2019, 19(4): 1266-1273. | |
20 | CHAN E, PRADHAN A K, POLLATSEK A, et al. Are driving simulators effective tools for evaluating novice drivers’ hazard anticipation, speed management, and attention maintenance skills?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2010, 13(5): 343-353. |
21 | ZHANG W, WANG Y, FENG Z, et al. A method to improve the hazard perception of young novice drivers based on Bandura’s observational learning theory: supplement to expert commentary training[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 85: 133-149. |
22 | ASADAMRAJI M, SAFFARZADEH M, ROSS V, et al. A novel driver hazard perception sensitivity model based on drivers’ characteristics: a simulator study[J]. Traffic Injury Prevention, 2019, 20(5): 492-497. |
23 | LI Z, BAO S, KOLMANOVSKY I V, et al. Visual-manual distraction detection using driving performance indicators with naturalistic driving data[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2528-2535. |
24 | 糜江, 喻恺, 黄菊. 基于多模轨迹融合的货车危险驾驶行为辨识[J]. 中国交通信息化, 2023(2): 113-117. |
MI J, YV K, HUANG J. Truck hazard driving based on multi-mode trajectory fusion is identified [J]. China ITS Journal, 2023(2): 113-117. | |
25 | 唐智慧, 郑伟皓, 吴海涛. 基于Kohonen-SVM模型的驾驶行为险态动态辨识[J]. 安全与环境学报, 2018, 18(4): 1386-1390. |
TANG Z H, ZHENG W H, WU H T. Dynamic identification of dangerous driving behavior based on Kohonen-SVM model [J]. Journal of Safety and Environment, 2018, 18(4): 1386-1390. | |
26 | 张长水. 机器学习面临的挑战[J]. 中国科学:信息科学, 2013, 43(12): 1612-1623. |
ZHANG C S. Challenges of machine learning [J]. SCIENTIA SINICA Informationis, 2013, 43(12): 1612-1623. | |
27 | MOLCHANOV P, GUPTA S, KIM K, et al. Multi-sensor system for driver’s hand-gesture recognition[C]. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG): Vol. 1. 2015: 1-8. |
28 | ZHANG C, PATEL M, BUTHPITIYA S, et al. Driver classification based on driving behaviors[C]. Proceedings of the 21st International Conference on Intelligent User Interfaces. Sonoma California USA, 2016: 80-84. |
29 | WATLING C N, HOME M. Hazard perception performance and visual scanning behaviours: the effect of sleepiness[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 90: 243-251. |
30 | LEWSEY J. Medical statistics: a guide to data analysis and critical appraisal[J]. Annals of The Royal College of Surgeons of England, 2006, 88(6): 603. |
31 | GHASEMI A, ZAHEDIASL S. Normality tests for statistical analysis: a guide for non-statisticians[J]. International Journal of Endocrinology and Metabolism, 2012, 10(2): 486-489. |
32 | KRZYWINSKI M, ALTMAN N. Nonparametric tests[J]. Nature Methods, 2014, 11(5): 467-468. |
33 | 陈凯亮, 李唯真, 张泽庆. 融合XGBoost与SHAP的机动车交通事故致因机理分析[J]. 汽车实用技术, 2023, 48(4): 179-185. |
CHEN K L, LI W Z, ZHANG Z Q. Severity analysis of vehicle traffic accidents based on XGBoost and SHAP [J]. Automobile Applied Technology, 2023, 48(4): 179-185. | |
34 | 肖宇, 赵建有, 叱干都, 等. 基于XGBoost的短时出租车速度预测模型[J]. 交通信息与安全, 2022, 40(3): 163-170. |
XIAO Y, ZHAO J Y, CHI G D, et al. A short-term prediction model for taxi speed based on XGBoost[J]. Journal of Transport Information and Safety, 2022, 40(3): 163-170. | |
35 | 彭一川, 李崇奕, 王可, 等. 基于权重的欠采样提升算法识别激进驾驶员[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(2): 195-201. |
PENG Y C, LI C Y, WANG K, et al. A weight-based undersampling boosting algorithm identifies aggressive drivers [J]. Journal of Wuhan University of Techonlogy(Transportation Science & Engineering), 2021, 45(2): 195-201. | |
36 | 高雪林, 汤厚骏, 沈佳平, 等. 基于XGBoost的高速公路事故类型及严重程度预测方法[J]. 交通信息与安全, 2023, 41(4): 55-63. |
GAO X L, TANG H J, SHEN J P, et al. A method for predicting the type and severity of freeway accidents based on XGBoost[J]. Journal of Transport Information and Safety, 2023, 41(4): 55-63. | |
37 | 唐瀛, 闫仁武. 基于改进SVM算法的车牌识别研究[J]. 现代计算机, 2021, 27(30): 88-93. |
TANG Y, YAN R W. License plate recognition based on improved SVM algorithm[J]. Modern Computer, 2021, 27(30):88-93. |
[1] | 刘卫东,韩宗志,高镇海,康艳虎. 基于智能轮胎系统的实时路面辨识技术[J]. 汽车工程, 2024, 46(4): 617-625. |
[2] | 陈琳,何熳平,吴淑孝,陈德乾,赵铭思,潘海鸿. 基于自适应模糊C-均值算法的退役锂离子电池快速聚类[J]. 汽车工程, 2024, 46(4): 643-651. |
[3] | 马艳丽, 秦钦, 董方琦, 娄艺苧. 基于风险场的不同认知次任务下接管风险评估模型[J]. 汽车工程, 2024, 46(1): 9-17. |
[4] | 陈吉清,李子涵,兰凤崇,蒋心平,潘威,陈继开. 基于非线性降维IC特征的实车电池SOH估计[J]. 汽车工程, 2023, 45(2): 199-208. |
[5] | 崔格格,吕超,李景行,张哲雨,熊光明,龚建伟. 数据驱动的智能车个性化场景风险图构建[J]. 汽车工程, 2023, 45(2): 231-242. |
[6] | 马艳丽,卢俊,朱洁玉,韩笑雪. 不同认知负荷非驾驶任务下高度自动化驾驶接管绩效预测[J]. 汽车工程, 2023, 45(12): 2330-2337. |
[7] | 姜俊昭,杨文豪,彭彬,郭婷,徐业凯,王国卓. 基于能耗加权策略的燃料电池汽车续驶里程预测[J]. 汽车工程, 2023, 45(12): 2357-2365. |
[8] | 何智成,谢泽军,刘侃,周恩临,唐谦,黄元毅. 纯电动汽车传动系统-电机结构参数协同设计优化[J]. 汽车工程, 2023, 45(11): 2113-2122. |
[9] | 廉玉波,凌和平,王钧斌,潘华,谢朝. 基于混合高斯-隐马尔可夫模型的动力电池实时热失控检测[J]. 汽车工程, 2023, 45(1): 139-146. |
[10] | 龙文民,鲁光泉,石茜,谭海天. 基于驾驶人跟驰特性的前撞预警指标与阈值确定方法[J]. 汽车工程, 2022, 44(9): 1339-1349. |
[11] | 赵健,李雅欣,佟静,朱冰,武维祥,孙博华,韩嘉懿. 基于车辆动力学响应特征的越野地面分类方法[J]. 汽车工程, 2022, 44(6): 909-918. |
[12] | 黄晶,彭扬,黄烨,彭晓燕. 考虑噪声标签影响的驾驶员精神负荷状态评价[J]. 汽车工程, 2022, 44(5): 771-777. |
[13] | 胡杰,朱雪玲,何陈,杨光宇. 基于实车数据的电动汽车电池健康状态预测[J]. 汽车工程, 2021, 43(9): 1291-1299. |
[14] | 郭柏苍,谢宪毅,金立生,戎辉,贺阳,纪丙东. 考虑多维驾驶特性的制动反应时间预测模型[J]. 汽车工程, 2021, 43(11): 1683-1692. |
[15] | 谢奕展,程夕明. 锂离子电池状态估计机器学习方法综述[J]. 汽车工程, 2021, 43(11): 1720-1729. |
|