Automotive Engineering ›› 2024, Vol. 46 ›› Issue (12): 2181-2189.doi: 10.19562/j.chinasae.qcgc.2024.12.005
Previous Articles Next Articles
Received:
2024-07-01
Online:
2024-12-25
Published:
2024-12-20
Contact:
Chang Qi
E-mail:qichang@dlut.edu.cn
Lei Yan,Shu Yang,Chang Qi. Topology and Size Joint Optimization Design Method for Stamping Die Structure[J].Automotive Engineering, 2024, 46(12): 2181-2189.
1 | 韦韡, 周江奇, 李恒佰, 等. 汽车高强板用Cr8类冲压模具钢性能研究[J]. 汽车工程, 2020, 42(6): 826-831. |
WEI W, ZHOU J Q, LI H B, et al. Study on properties of Cr8 stamping die steel for automobile high strength plate[J]. Automotive Engineering, 2020, 42(6): 826-831. | |
2 | LIU H, DHAWAN S, SHEN M, et al. Industry 4.0 in metal forming industry towards automotive applications: a review[J]. International Journal of Automotive Manufacturing and Materials, 2022, 1(1): 16-27. |
3 | 徐晓, 王二冬, 夏琴香, 等. 基于变密度法的级进模模具结构拓扑优化设计[J]. 机械设计与制造, 2018(4): 90-93. |
XU X, WANG E D, XIA Q X, et al. Structural topological optimization of multi-position progressive die based on variable density method[J]. Machinery Design & Manufacture, 2018(4): 90-93. | |
4 | SHEU J J, YANG C H. A simplified column model for the automatic design of the stamping die structure[J]. Journal of Materials Processing Technology, 2006, 177(1-3): 109-113. |
5 | AZAMIRAD G, AREZOO B. Topology optimization of stamping die components using evolutionary structural optimization method[J]. Proc IMechE Part B-Journal of Engineering Manufacture, 2016, 231(4): 690-698. |
6 | AZAMIRAD G, AREZOO B. Structural design of stamping die components using bi-directional evolutionary structural optimization method[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 969-979. |
7 | XU T, WU H, XUE F, et al. Structural design of stamping die of advanced high-strength steel part for automobile based on topology optimization with variable density method[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121: 8115-8125. |
8 | NILSSON A, BIRATH F. Topology optimization of a stamping die[C]. Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes, Porto, Portugal, 2007: 449-454. |
9 | XU D, CHEN J, TANG Y, et al. Topology optimization of die weight reduction for high-strength sheet metal stamping[J]. International Journal of Mechanical Sciences, 2012, 59(1): 73-82. |
10 | WANG H, XIE H, LIU Q, et al. Structural topology optimization of a stamping die made from high-strength steel sheet metal based on load mapping[J]. Structural and Multidisciplinary Optimization, 2018, 58(2): 769-784. |
11 | 谢晖, 金意航, 王杭燕, 等. 基于拓扑优化的高强钢冲压凸模设计方法[J]. 锻压技术, 2018, 43(6): 97-102. |
XIE H, JIN Y H, WANG H Y, et al. Design method of high strength steel stamping punch based on topology optimization[J]. Forming & Stamping Technology, 2018, 43(6): 97-102. | |
12 | CHANTZIS D, LIU X, POLITIS D J, et al. Review on additive manufacturing of tooling for hot stamping[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(1-2): 87-107. |
13 | CHANTZIS D, LIU X, POLITIS D J, et al. Design for additive manufacturing (DfAM) of hot stamping dies with improved cooling performance under cyclic loading conditions[J]. Additive Manufacturing, 2021, 37: 101720. |
14 | HAMASAKI H, NAKAZONO M, HINO R, et al. Stiffness improvement of stamping die by means of topology optimization[J]. Advanced Materials Research, 2014, 939: 266-273. |
15 | SU T, HE T, YANG R, et al. Topology optimization and lightweight design of stamping dies for forming automobile panels[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121: 4691-4702. |
16 | JIA B B, CHEN G, WANG W W, et al. Deformation characteristics and forming force limits of multi-point forming with individually controlled force–displacement[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(5-6): 1565-1576. |
17 | WANG Y, LI X, SUI H, et al. Numerical investigation and mold optimization of the automobile coat rack compression molding[J]. Advances in Materials Science and Engineering, 2021, 2021(1). |
18 | ZHANG Z, YARLAGADDA T, ZHENG Y, et al. Isogeometric analysis-based design of post-tensioned concrete beam towards construction-oriented topology optimization[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 4237-4253. |
19 | 杨旭静, 邓超, 李洲, 等. 载荷映射方法及其在模具结构优化中的应用[J]. 湖南大学学报(自然科学版), 2011, 38(9): 27-31. |
[1] | Junwei Hua,Wenbin Hou. Platform Design of Vehicle Body Based on Multi-object Discrete Topology Optimization [J]. Automotive Engineering, 2024, 46(6): 1075-1084. |
[2] | Chao Wang,Ming Li,Aiguo Cheng,Zhicheng He,Wanyuan Yu. Lightweight Design of Material-Structure for Steel-Aluminum Hybrid Cab [J]. Automotive Engineering, 2024, 46(4): 735-744. |
[3] | Bo Liu,Yongxin Tang,Yi Wu,Ziyang Wang,Qin Yang,Tiegang Hu,Xiaomin Xu. Study on Lightweight Design of Integrated Mega-casting Aluminum Alloy Vehicle Body Components [J]. Automotive Engineering, 2024, 46(12): 2154-2163. |
[4] | Xianming Meng,Pengfei Ren,Sai Zhang. Design and Performance Study of Complex Thin Wall Structure of the Front Cabin [J]. Automotive Engineering, 2024, 46(12): 2173-2180. |
[5] | Yubo Lian,Bengang Yi,Yingying Cui,Hongsheng Tian,Junfei Yan,Chen Cheng. Research on Integrated Design of Battery Pack and Car Body Based on Torsional Stiffness [J]. Automotive Engineering, 2023, 45(4): 647-653. |
[6] | Yunkai Gao,Suo Zhang,Ze Yuan. Cab Topology Optimization Design Considering Fatigue Performance [J]. Automotive Engineering, 2023, 45(3): 468-476. |
[7] | Yonglei Su,Zhifei Zhang. Correction Method of Static Stiffness and Multi-level Topology Optimization for Subframe [J]. Automotive Engineering, 2023, 45(11): 2157-2164. |
[8] | Xiaokai Chen,Chao Li,Yingchun Bai,Zifa Yang. Multi⁃material Topology Optimization of Automotive Control Arm [J]. Automotive Engineering, 2021, 43(7): 1088-1095. |
[9] | Zhifei Zhang,Tongtong Hu,Weichun Fan,Changjin Wang,Ruiwen Huang. Design Optimization of Vehicle Seats for Pull Safety Performance [J]. Automotive Engineering, 2021, 43(2): 218-225. |
[10] | Gao Yunkai, Liu Zhe, Xu Yanan, Xu Xiang, Feng Zhaoxuan. Research on the Application of CFRP in Automobile Panels [J]. Automotive Engineering, 2020, 42(7): 978-984. |
[11] | Cui An, Xu Xiaoqian, Sun Wenlong, Yang Weili, Huang Xianqing, Liu Tianci. Study on Crashworthiness Optimization of Carbon-fiberSandwich Panel Structure with Polypropylene Foam Core [J]. Automotive Engineering, 2020, 42(6): 840-846. |
[12] | Wu Changfeng, Na Jingxin, Qin Guofeng, Lu Linzhao, Yuan Zheng, Yang Jiazhou. Improvement of Coach Crashworthiness Based onTopology Optimization of Substructure [J]. Automotive Engineering, 2019, 41(8): 922-926. |
[13] | Ma Fangwu, Han Lu, Chen Shixian, Pu Yongfeng, Shen Liang. Dimensional Stability Analysis of Polylactic-acid StructuralParts Based on Time Hardening Theory [J]. Automotive Engineering, 2019, 41(6): 711-716. |
[14] | Cui An, Liu Fangfang, Zhang Han, Hao Yuxing, Chen Chong & Zhang Rui. Performance Analysis and Optimization of Foam-filled Aluminum-alloy Corrugated Sandwich Panel Structure for Vehicle Body [J]. Automotive Engineering, 2019, 41(10): 1221-1227. |
|