| 1 |
王海, 张桂荣, 罗彤, 等. 面向自动驾驶道路场景中异常案例的多模态数据挖掘算法[J]. 汽车工程, 2024, 46(7): 1239-1248.
|
|
WANG H, ZHANG G, LUO T, et al. A multi-modal data mining algorithm for corner case of automatic driving road scene[J]. Automotive Engineering, 2024, 46(7): 1239-1248.
|
| 2 |
王海, 李建国, 蔡英凤, 等. 基于激光雷达点云的动态驾驶场景多任务分割网络[J]. 汽车工程, 2024, 46(9): 1608-1616.
|
|
WANG H, LI J, CAI Y, et al. A LiDAR-based dynamic driving scene multi-task segmentation network[J]. Automotive Engineering, 2024, 46(9): 1608-1616.
|
| 3 |
陶乐, 王海, 蔡英凤, 等. 面向自动驾驶场景的多目标点云检测算法[J]. 汽车工程, 2024, 46(7): 1208-1218.
|
|
TAO L, WANG H, CAI Y, et al. Multi-object detection algorithm based on point cloud for autonomous driving scenarios[J]. Automotive Engineering, 2024, 46(7): 1208-1218.
|
| 4 |
PHILION J, FIDLER S. Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D[M]∥VEDALDI A, BISCHOF H, BROX T, et al. Computer vision-ECCV 2020: Vol. 12359. Cham: Springer International Publishing, 2020: 194-210.
|
| 5 |
LI Z, WANG W, LI H, et al. BEVFormer: learning bird’s-eye-view representation from lidar-camera via spatiotemporal transformers[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
|
| 6 |
HUANG J, HUANG G, ZHU Z, et al. BEVDet: high-performance multi-camera 3D object detection in bird-eye-view[J]. arXiv, 2022.
|
| 7 |
ZHENG L, LI S, TAN B, et al. Rcfusion: fusing 4D radar and camera with bird’s-eye view features for 3-d object detection[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-14.
|
| 8 |
ZHOU T, CHEN J, SHI Y, et al. Bridging the view disparity between radar and camera features for multi-modal fusion 3D object detection[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1523-1535.
|
| 9 |
WU D, LIAO M W, ZHANG W T, et al. YOLOP: you only look once for panoptic driving perception[J]. Machine Intelligence Research, 2022, 19(6): 550-562.
|
| 10 |
LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705.
|
| 11 |
YANG C, CHEN Y, TIAN H, et al. BEVFormer v2: adapting modern image backbones to bird’s-eye-view recognition via perspective supervision[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 17830-17839.
|
| 12 |
QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
|
| 13 |
LIN Z, LIU Z, XIA Z, et al. RCBEVDet: radar-camera fusion in bird’s eye view for 3D object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 14928-14937.
|
| 14 |
DAO T, FU D, ERMON S, et al. FlashAttention: fast and memory-efficient exact attention with IO-awareness[J]. Advances in Neural Information Processing Systems, 2022, 35: 16344-16359.
|
| 15 |
ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv, 2021.
|
| 16 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30.
|
| 17 |
LIU F, HUANG T, ZHANG Q, et al. Ray denoising: depth-aware hard negative sampling for multi-view 3D object detection[M]∥LEONARDIS A, RICCI E, ROTH S, et al. Computer Vision - ECCV 2024: Vol. 15107. Cham: Springer Nature Switzerland, 2025: 200-217.
|
| 18 |
DAO T. FlashAttention-2: faster attention with better parallelism and work partitioning[J]. arXiv, 2023.
|
| 19 |
ZHU B, JIANG Z, ZHOU X, et al. Class-balanced grouping and sampling for point cloud 3D object detection[J]. arXiv, 2019.
|
| 20 |
KIM Y, SHIN J, KIM S, et al. CRN: camera radar net for accurate, robust, efficient 3D perception[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 17615-17626.
|
| 21 |
UHRIG J, SCHNEIDER N, SCHNEIDER L, et al. Sparsity invariant CNNS[C]. 2017 International Conference on 3D Vision (3DV). IEEE, 2017: 11-20.
|
| 22 |
PARK D, AMBRUS R, GUIZILINI V, et al. Is pseudo-lidar needed for monocular 3D object detection?[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3142-3152.
|
| 23 |
LI Y, GE Z, YU G, et al. BEVDepth: acquisition of reliable depth for multi-view 3D object detection[C]. Proceedings of the AAAI Conference on Artificial Intelligence: p37. 2023: 1477-1485.
|
| 24 |
WANG J, GAO Z, ZHANG Y, et al. Real-time detection and location of potted flowers based on a ZED camera and a YOLO V4-tiny deep learning algorithm[J]. Horticulturae, 2021, 8(1): 21.
|