汽车工程 ›› 2020, Vol. 42 ›› Issue (2): 141-148.doi: 10.19562/j.chinasae.qcgc.2020.02.001

• •    下一篇

基于滑模自抗扰的电制动系统动态负载模拟*

马瑞海1,2, 王丽芳1, 张俊智3, 何承坤3   

  1. 1.中国科学院电力电子与电力传动重点实验室,电工研究所,北京 100190;
    2.中国科学院大学,北京 100049;
    3.清华大学,汽车安全与节能国家重点实验室,北京 100084
  • 收稿日期:2019-01-17 出版日期:2020-02-25 发布日期:2020-02-25
  • 通讯作者: 王丽芳,研究员,博士生导师,E-mail:wlf@mail.iee.ac.cn
  • 基金资助:
    *国家重点研发计划(2016YFB0101402)资助

Sliding Mode Active Disturbance Rejection Control for Dynamic Load Emulation of the Electric Braking System

Ma Ruihai1,2, Wang Lifang1, Zhang Junzhi3, He Chengkun3   

  1. 1.Key Laboratory of Power Electronics and Electric Drives, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190;
    2.University of Chinese Academy of Sciences, Beijing 100049;
    3.Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084
  • Received:2019-01-17 Online:2020-02-25 Published:2020-02-25

摘要: 为精准模拟传动系弹性及齿隙作用下电制动系统非线性机械负载,提出了自适应模糊滑模自抗扰的测功机控制算法。首先,针对一款前驱电动汽车,建立融合感应电机模型的车辆及台架机电一体化模型,引入典型正常制动和防抱死制动控制作为测试对象。其次,构建扩张状态观测器估计台架系统未建模动态,以自适应模糊滑模控制测功机实时模拟高度非线性机械负载。最后,开展了制动控制策略台架测试的仿真研究。结果表明:提出的方法可精确模拟电制动系统动态负载,有效提高制动控制算法台架测试精度。

关键词: 电动汽车, 电制动系统, 测功机, 负载模拟, 自适应模糊滑模控制, 扩张状态观测器

Abstract: To accurately emulate the nonlinear mechanical loads of the electric braking system with consideration of the backlash and elasticity in a transmission system, a dynamometer control algorithm based on an adaptive fuzzy sliding mode active disturbance rejection control is proposed. Firstly, the mechatronics model for a front axle drive electric vehicle and the test bench with the integrated induction motor model is established, and the typical normal braking and anti-lock braking control strategies are introduced as the test objects. Then, an extended state observer is constructed to estimate the unmodelled dynamics of the test bench system, and the adaptive fuzzy sliding mode control is adopted as the dynamometer regulator to emulate the highly nonlinear mechanical loads. Finally, simulations of bench tests on the braking control strategies are carried out. The results show that the proposed method can accurately simulate the dynamic load of the electric braking system and effectively improve the bench test accuracy of the braking control algorithm

Key words: electric vehicle, electric braking system, dynamometer, load emulation, adaptive fuzzy sliding mode control, extended state observer