汽车工程 ›› 2021, Vol. 43 ›› Issue (6): 851-860.doi: 10.19562/j.chinasae.qcgc.2021.06.008

• • 上一篇    下一篇

智能汽车极限工况下联合制动与转向的自动紧急避撞研究

来飞1,2(),黄超群3,董红亮1,陈涛2,赵树廉4   

  1. 1.重庆理工大学,汽车零部件先进制造技术教育部重点实验室,重庆 400054
    2.汽车噪声振动和安全技术国家重点实验室,重庆 401122
    3.重庆工商职业学院智能制造与汽车学院,重庆 401520
    4.清华大学车辆与运载学院,北京 100084
  • 收稿日期:2020-10-30 修回日期:2021-01-26 出版日期:2021-06-25 发布日期:2021-06-29
  • 通讯作者: 来飞 E-mail:laifeichq@cqut.edu.cn
  • 基金资助:
    重庆市教委科学技术研究项目(KJQN202001102);重庆市巴南区科技人才专项(创新性基础研究)(2020TJZ017);重庆理工大学科研启动基金(2019ZD31);重庆市留创计划创新类项目(cx2018135)

Research on Automatic Emergency Collision Avoidance of Intelligent Vehicle in Extreme Condition by Combined Braking and Steering Control

Fei Lai1,2(),Chaoqun Huang3,Hongliang Dong1,Tao Chen2,Shulian Zhao4   

  1. 1.Chongqing University of Technology,Key Laboratory of Advanced Manufacturing Technology for Automobile Parts,Chongqing 400054
    2.State Key Laboratory of Vehicle NVH and Safety Technology,Chongqing 401122
    3.Institute of Intelligent Manufacturing and Automotive,Chongqing Technology and Business Institute,Chongqing 401520
    4.School of Vehicle and Mobility,Tsinghua University,Beijing 100084
  • Received:2020-10-30 Revised:2021-01-26 Online:2021-06-25 Published:2021-06-29
  • Contact: Fei Lai E-mail:laifeichq@cqut.edu.cn

摘要:

为提高智能汽车极限工况下的自动紧急避撞能力,提出了一种联合制动与转向的综合控制方法。首先,建立了包含转向、制动和悬架子系统耦合特性的18自由度统一动力学模型,并对其进行了水平路面上的转向制动仿真。接着,提出了联合制动与转向的自动紧急避撞系统总体框架,其中路径规划选用五次多项式规划算法,纵向采用滑模跟踪控制,侧向采用基于2自由度参考模型的最优四轮转向跟踪控制。最后,参考乘用车双移线极限工况测试国际标准,构建自动紧急避撞驾驶场景,对上述模型在不同车速下的自动紧急转向避撞和联合制动与转向避撞进行了对比仿真。结果表明:当车速较高时,车辆实际轨迹与理想跟踪轨迹存在一定滞后,极限工况下仅通过转向操作难以成功避撞;而联合制动与转向的避撞控制系统可进一步提高车辆极限工况下的自动紧急避撞能力,最大通过车速可由50提高至60 km/h。

关键词: 智能汽车, 极限工况, 自动紧急避撞, 联合控制

Abstract:

In order to enhance the automatic emergency collision avoidance ability of intelligent vehicle under extreme working conditions, an integrated control method combined braking and steering is proposed. Firstly, an 18 degrees?of?freedom (DOF) unified dynamic model including the coupling characteristics of steering, braking and suspension subsystems is established, on which a braking on curve simulation is conducted on a level road. Then an overall framework of automatic emergency collision avoidance system combining braking and steering is put forward, in which a fifth?order polynomial programming algorithm is used for path planning, and a sliding mode tracking control is adopted for longitudinal movement while an optimal four?wheel steering tracking control based on two DOF reference model is used for lateral movement. Finally, taking the international standard on double lane change maneuver test under extreme condition as reference, a driving scene of automatic emergency collision avoidance is constructed, and a comparative simulation on above?mentioned 18 DOF model with automatic emergency steering collision avoidance and combined braking and steering collision avoidance at different speeds is carried out. The results show that when the vehicle speed is relatively high, the real trace has a certain lag relative to the ideal trace, and in extreme condition, the collision avoidance is hard to succeed only by steering maneuver, while the combined braking and steering collision avoidance system can further enhance the automatic emergency collision avoidance ability of vehicle in extreme condition, with the maximum passing speed increasing from 50 to 60 km/h.

Key words: intelligent vehicle, extreme condition, automatic emergency collision avoidance, combination control